

Oxfordshire Strategic Model - Local Update for Oxford Transport Schemes

Local Model Validation Report

Oxfordshire County Council

September 2022

Notice

This document and its contents have been prepared and are intended solely as information for Oxfordshire County Council and use in relation to Local Update for Oxford Transport Schemes

Atkins Limited assumes no responsibility to any other party in respect of or arising out of or in connection with this document and/or its contents.

This document has 74 pages including the cover.

Document history

Document title: Local Model Validation Report

Document reference: LMVR

Revision	Purpose description	Originated	Checked	Reviewed	Authorised	Date
Rev 1.0	First draft	EED	OS	OS		02/08/2022
Rev 2.0	Second draft	EED	OS	AEA	AEA	12/09/2022
Rev 3.0	Third draft		OS	AEA		16/09/2022
Rev 4.0	Final		OS	AEA	AEA	22/09/2022
Rev 5.0	Final			OS	AEA	26/09/2022
Rev 6.0	Accessibility changes		SP	OS	AEA	14/10/2022

Client signoff

Client	Oxfordshire County Council
Project	Oxfordshire Strategic Model - Local Update for Oxford Transport Schemes
Job number	5213076
Client signature/date	

Contents

Chapter		Page
Exec	utive Summary	7
1.	Overview	8
1.1.	Background	8
1.2.	Study Scope	8
1.3.	Contents of this Report	10
2.	Key Features of the model	11
2.1.	Model Base Year	11
2.2.	Zoning System	11
2.3.	Time Periods	12
2.4.	Additional information	12
3.	The highway assignment model	13
3.1.	Modelled Area	13
3.2.	Demand Segmentation	14
3.3.	PCU Factors	15
3.4.	Assignment Methodology	15
3.5.	Generalised Cost	16
3.6.	Capacity Restraint	17
4.	The Public Transport Assignment Model	18
4.1.	Network Structure	18
4.2.	Demand segmentation	18
4.3.	Assignment Methodology	18
4.4.	Generalised Cost Formulations and Parameter Values	18
4.5.	Fares	20
4.6.	Bus Journey Times	20
5.	Highway Model Standards	21
5.1.	Validation Criteria and Acceptability Guidelines	21
5.Z.	Flow Calibration	21
5.3. 5.1	Convergence Measures and Acceptable Values	22
0 .4.	Collibration Date	23
b .		24
6.1.	Data Collection	24
6.Z.	Spatial distribution of the commuting trips to Eastern Arc	24
0.3. 6 /	Indite Data Collated	20
6.5	ANPR data	20 27
7	Highway Network Undeta	21
<i>(</i> .	Ingriway Network Opuale	28

7.1.	Network Coverage	28
7.2.	Junctions	29
7.3.	Free Flow Speed	29
7.4.	Signal Timings	29
7.5.	Public transport Routes and Services	29
7.7.	Traffic Restrictions	29
8.	Trip ends comparison	30
9.	Analysis of growth 2013 to 2019	32
10.	Highway Trip Matrix Development	36
10.1.	Background to Matrix Building Methodology	36
10.2.	Select Link Infilling	37
11.	Highway Model Calibration	38
11.1.	Calibration for Oxford Model Updates	38
11.2.	Calibration Procedure	38
11.3.	Flow Calibration Results	38
11.4.	Journey Lime Validation	41
11.5.	I urning movement calibration	43
11.0.		44
12.	Public Transport Assignment Model Update	46
12.1.	Network update	46
12.2.		40
12.3.	Fares	40 47
13.	P&R demand update	48
٨٥٥٥	ndicos	50
Appe	nuces	50
	Individual Counts Calibration - AM Peak	51
A.1.	Individual Counts Calibration – Inter Peak	54
A.3.	Individual Counts Calibration – PM Peak	57
Appe	ndix B. Journey Time Route Graphs	60
B.1.	Route 1 NB: A423/A4144 Kennington Rbt to A40/Banbury Rd Rbt – AM Peak	60
B.2.	Route 1 SB: A423/A4144 Kennington Rbt to A40/Banbury Rd Rbt – AM Peak	60
B.3.	Route 2 EB: A420/A34 Botley Interchange to A420/Brewer Street Jct – AM Peak	61
B.4.	Route 2 WB: A420/A34 Botley Interchange to A420/Brewer Street Jct – AM Peak	61
B.5. Peak	Route 3 EB: High Street/Longwall St Jct to A40/A4142/A420 Headington Rbt – AM 62	
B.6. Peak	Route 3 WB: High Street/Longwall St Jct to A40/A4142/A420 Headington Rbt – AM 62	/
B.7.	Route 4 EB: A40 – AM Peak	63

 B.8. B.9. B.10. B.11. B.12. B.13. Peak 	Route 4 WB: A40 – AM Peak Route 1 NB: A423/A4144 Kennington Rbt to A40/Banbury Rd Rbt – Inter Peak Route 1 SB: A423/A4144 Kennington Rbt to A40/Banbury Rd Rbt – Inter Peak Route 2 EB: A420/A34 Botley Interchange to A420/Brewer Street Jct – Inter Peak Route 2 WB: A420/A34 Botley Interchange to A420/Brewer Street Jct – Inter Peak Route 3 EB: High Street/Longwall St Jct to A40/A4142/A420 Headington Rbt – Inter 66	63 64 65 65 r
B.14.	Route 3 WB: High Street/Longwall St Jct to A40/A4142/A420 Headington Rbt –	
Inter F	Peak	66
B.15.	Route 4 EB: A40 – Inter Peak	67
B.16.	Route 4 WB: A40 – Inter Peak	67
B.17.	Route 1 NB: A423/A4144 Kennington Rbt to A40/Banbury Rd Rbt – PM Peak	68
B.18.	Route 1 SB: A423/A4144 Kennington Rbt to A40/Banbury Rd Rbt – PM Peak	68
B.19.	Route 2 EB: A420/A34 Botley Interchange to A420/Brewer Street Jct – PM Peak	69
B.20.	Route 2 WB: A420/A34 Botley Interchange to A420/Brewer Street Jct – PM Peak	69
B.21. Peak	Route 3 EB: High Street/Longwall St Jct to A40/A4142/A420 Headington Rbt – PM 70	
B.22. Peak	Route 3 WB: High Street/Longwall St Jct to A40/A4142/A420 Headington Rbt – PM 70	1
B.23.	Route 4 EB: A40 – PM Peak	71
B.24.	Route 4 WB: A40– PM Peak	71
Appe	ndix C. NTEM growth factors for bus and rail	72

Tables

Table 2-1 - OSM Zoning System	11
Table 2-2 - Model Peak Hours	12
Table 3-1 - User Class Definition	15
Table 3-2 - PCU Conversion Factors	15
Table 3-3 - Base Year 2018 PPM and PPK Values by User Class and Time Period	17
Table 4-1 - Assignment Parameters	19
Table 4-2 - PDFH waiting time	19
Table 5-1 - Flow Validation Criterion and Acceptability Guidelines	21
Table 5-2 - Journey Time Validation Criterion and Acceptability Guidelines	22
Table 5-3 - Summary of Convergence Measures and Base Model Acceptable Values	23
Table 6-1 - 2019 Traffic Counts Collated as part of the Model Update	25
Table 6-2 - Journey Time Routes	26
Table 9-1 - Comparison of growth of car trips at the Inner Cordon	32
Table 9-2 - Comparison of growth of car trips at the Outer Cordon	34
Table 10-1 - Matrix assessment summary (all vehicles)	36
Table 10-2 - 2018 Model Update Matrix Totals	37
Table 11-1 - Link Calibration Summary	38

Table 11-2 - AM Peak Journey Time Validation Summary	41
Table 11-3 - Inter Peak Journey Time Validation Summary	42
Table 11-4 - PM Peak Journey Time Validation Summary	42
Table 11-5 - Results of turning movements calibration - AM peak hour	43
Table 11-6 - Results of turning movements calibration – IP average hour	43
Table 11-7 - Results of turning movements calibration - PM peak hour	44
Table 11-8 - Model Convergence Summary	45
Table 12-1 - Comparison of matrix totals for bus and rail (Passengers)	46
Table 13-1 - Comparison of P&R demand - AM Peak (car leg)	48
Table 13-2 - Comparison of P&R demand - IP Peak (car leg)	49
Table 13-3 - Comparison of P&R demand - PM Peak (car leg)	49
Table 13-4 - Comparison of P&R demand – 12-hour period (car leg)	49
Table C-1 - Bus - NTEM growth factors between 2013 and 2018	72
Table C-2 - Rail - NTEM growth factors between 2013 and 2018	73

Figures

Figure 1-1 - Area of interest	9
Figure 2-1 - OSM Zones in Oxford	12
Figure 3-1 - Area of Detailed Modelling and Fully Modelled Area for the OSM	14
Figure 6-1 - Location of the employers who answered the survey	24
Figure 6-2 - Traffic Counts Locations	25
Figure 6-3 - Journey Time Routes	26
Figure 6-4 - Location of the ANPR cameras	27
Figure 7-1 - Network update on the 2018 Base Year Model	28
Figure 8-1 - Boundaries of the postal districts in Oxfordshire	30
Figure 8-2 - Comparison of trips at 12-hour period level (all purposes)	31
Figure 8-3 - Comparison of trips at 12-hour period level (HBW)	31
Figure 9-1 - Changes in routing between 2013 and 2018 models – Inner Cordon – A hour	AM peak 33
Figure 9-2 - Changes in routing between 2013 and 2018 models – Inner Cordon – Fhour	M peak 33
Figure 9-3 - Changes in routing between 2013 and 2018 models – Woodstock Rd 8 Rd – AM peak hour	Banbury ، 35
Figure 9-4 - Changes in routing between 2013 and 2018 models – Botley Rd & Abir – AM peak hour	ngdon Rd 35
Figure 11-1 - Link Flow Calibration - AM Peak	39
Figure 11-2 - Link Flow Calibration - Inter Peak	40
Figure 11-3 - Link Flow Calibration - PM Peak	40
Figure 11-4 - Journey Time Routes	41

Executive Summary

Oxfordshire County Council (OCC) commissioned Atkins to update the existing 2018 Oxfordshire Strategic Model (OSM) to provide a better representation of traffic in the City of Oxford where various transport measures are proposed. The model network update was based on the 2018 OSM, which now includes an enhanced level of network details in the core model area.

The model represents a neutral weekday (Monday – Thursday) in March 2018. It covers three time periods: the AM peak (08:00 - 09:00), an average hour Inter peak (10:00 - 16:00) and PM peak (17:00 - 18:00).

The model update has utilised data from a range of local sources including traffic counts and TomTom journey time data. The update included amendments to the highway and public transport networks and recalibration of the highway model.

This model update report describes the development of the modelled network and demand matrix and the calibration of the model.

Summary of Standards Achieved

The highway model has been tested against the criteria published by the Department for Transport for:

- · Link flows on individual links;
- Journey time comparison; and
- Model convergence.

Link Flows

In terms of individual flow accuracy, the model performs strongly across all three time periods. The majority of the individual links used for calibration passed the TAG criteria with 96% of the links in AM peak; 98% in Inter Peak; and PM peak. This demonstrates that the model achieves a good level of fit against observed flows across the study area.

Journey Times

Modelled journey times on four routes across the model area for all time periods show good correlation with observed journey times with one route failing the TAG criteria out of the 8 two-way observations, and 2 failing for the IP and PM.

Convergence

The base assignment models have shown to be stable for the three modelled time periods and meet the convergence criteria

Conclusions

The updated 2018 OSM base year model performs well against the relevant TAG criteria and is deemed suitable to form the basis for development of forecasts for the Oxford schemes including traffic filters.

1. Overview

1.1. Background

In 2013, Oxfordshire County Council (OCC) commissioned Atkins to develop a suite of multimodal strategic models to provide evidence to support robust future assessments for funding bids and scheme prioritisation, particularly in regard to transport scheme assessments that meet the Department for Transport (DfT) Transport Appraisal Guidance (TAG).

In specifying the model, there was particular emphasis on developing a model to identify the impact of transport and development in Oxfordshire as well as developing a model that could be used to support business cases and planning applications. The resulting Oxfordshire Strategic Model (OSM) was a new, strategic transport model that has been developed specifically to assess land use and transport interventions in Oxfordshire. The model is multi-modal and TAG compliant to underpin specific requirements of the DfT, and consists of three key elements:

- a Highway Assignment Model (HAM) in SATURN representing vehicle-based movements within and across the Oxfordshire County for weekday morning peak hour (08:00 09:00), an average inter-peak hour (10:00 16:00) and an evening peak hour (17:00 18:00);
- a Public Transport Assignment Model (PTAM) in EMME representing bus and rail-based movements across the same area and for the same time periods, month and year; and
- a multi-modal pivot incremental Variable Demand Model (VDM), coded in EMME, that estimates frequency choice, main mode choice, time period choice, destination choice, and sub-mode choice in response to changes in generalised costs of travel across the 24-hour period (07:00 – 07:00).

In September 2016, OCC commissioned Atkins to update the OSM with the forecasts provided by the NTEM (National Trip End Model) v7.0 dataset. In 2017 the model was updated again to take account of new local planning data, NTEM (v7.2) and TAG Databook (v1.8). In the summer of 2020, the model was further updated following comments from DfT on the Full Business Case report for the A40 Science Transit Phase 2 scheme. The business case was approved by DfT in November 2021.

1.2. Study Scope

In the winter of 2021, OCC commissioned Atkins to undertake the modelling for assessing the impact of various transport schemes in Oxford including proposals for traffic filters, a Zero Emission Zone and a workplace parking levy, using the OSM. The scope included a local update of the highway assignment model, which consisted of a review of the highway network in the 2018 model resulting mainly in the adjustments to the journey times in Oxford City. The trip matrices have also been updated using 2018 traffic counts and select link factoring. Furthermore, the parameters of the model were updated with the revised version of the TAG Databook (v1.17) released in November 2021.

To deliver this analysis, it was necessary to ensure that the newly created 2018 base year within the OSM was suitably replicating observed base year traffic flows within the study area (shown in Figure 1-1). The scope of work therefore included the local re-calibration of the highway model for most of the network in Oxford City at a 2018 level.

An update of the public transport model was also undertaken to bring it to a 2018 base year, including a comparison with the public transport demand matrices from another model that is being developed on behalf of OCC.

This report therefore sets out briefly the methodology for the update of the public transport assignment model and gets into significantly more detail about the methodology used for the update of the highway assignment model and its performance against the key validation criteria set out in the TAG guidance. To ensure the highway assignment model is an appropriate tool for its intended purpose, the following have been considered when updating it:

- To represent with a reasonable degree of accuracy the current traffic conditions in the core model area, the base year models are calibrated against TAG criteria, particularly in terms of traffic flows and journey time criteria;
- Highway networks are updated to represent the 2018 base year; and
- Base year matrices updated using traffic counts and the selected OD pair factoring using Select Link Analysis (SLA).

Figure 1-1 - Area of interest

1.3. Contents of this Report

The report is structured as follows:

- Section 2 describes the key features of the updated models;
- Sections 3 and 4 describe the highway and public transport assignment models, respectively;
- Section 5 defines the standards against which the highway model is validated;
- Section 6 summarises the observed data used for highway model calibration;
- Section 7 describes development of the updated highway network;
- Section 8 describes the car trip matrices development;
- Section 9 contains the procedures used to calibrate the model and the respective results;
- Section 10 describes the public transport model update;
- Section 11 describes the Park and Ride demand update; and
- Section 12 summarises the base year model development/update.

2. Key Features of the model

2.1. Model Base Year

The OSM has a 2018 base year and represents an average weekday covering a typical, Monday, Tuesday, Wednesday and Thursday in March.

2.2. Zoning System

The highway model is part of an integrated modelling suite, which links the VDM to both the highway assignment and public transport assignment models. The zoning system built for OSM is compatible with NTEM and the UK Census Output Areas, which contains demographic information such as number of households etc. In particular, zones in Oxfordshire are aggregated from UK census Output Area zones, attempting to have less than 500 households per zone. This ensures that zones are fine enough in the core study area, with no zone generating a demand of more than 300 pcu1 per hour, following current best practice. Figure 2-1 shows the zones in the area of interest, i.e. Oxford City.

The resulting number of zones by area is shown in Table 2-1. In total, there are 704 zones covering the whole of Great Britain, with 553 zones falling in Oxfordshire. In particular, all the five P&R sites and major car parks in Oxford are given specific zones, together with two separate airport zones for Heathrow and Gatwick. An additional 121 dummy zones were added as placeholders for future development proposals. The zoning system is identical in both assignment models and the VDM.

Area	No. of Zones
Oxford	130
Didcot / Wallingford / Wantage	42
Bicester	26
Abingdon	30
Witney	25
Banbury	7
Rest of Oxfordshire	293
Hinterland	115
Rest of UK	36
Total	704

Table 2-1 - OSM Zoning System

¹ Passenger car unit

Figure 2-1 - OSM Zones in Oxford

2.3. Time Periods

Both assignment models include three time periods as shown below in Table 2-2. They represent the AM and PM peak hours, plus a period representing an average Inter-peak hour.

Table 2-2 - Model Peak Hour

Model Time Period	Temporal Coverage
AM Peak Hour	08:00 - 09:00
Average Inter-Peak hour	10:00 - 16:00
PM Peak Hour	17:00 – 18:00

2.4. Additional information

More detailed information about the two assignment models can be found in the "OSM HAM Development Report - Review2021 - Rev 4.0" and "OSM Public Transport Model Report - Update_Jan2021_v5.3 final", both issued in January 2021 as part of the Full Business Case for A40 Science Transit Phase 2 scheme.

3. The highway assignment model

3.1. Modelled Area

TAG Unit M3.1 states that the geographic coverage of highway assignment models generally needs to:

- allow for the strategic re-routeing impacts of interventions;
- ensure that areas outside the main area of interest, which are potential alternative destinations, are properly represented; and
- ensure that the full lengths of trips are represented for the purpose of deriving costs.

The modelled area therefore needs to be large enough to include these elements, but within the modelled area the level of detail should vary as follows:

- **Fully Modelled Area (FMA)**: the area over which proposed interventions have influence, and in which junctions are in SATURN simulation, is further subdivided as:
 - Area of Detailed Modelling (ADM) the area over which significant impacts of interventions are certain and the modelling detail in this area would be characterised by: representation of all trip movements; small zones; very detailed networks; and junction modelling (including flow metering and blocking back);
 - Rest of the Fully Modelled Area the area over which the impacts of interventions are considered to be quite likely but relatively weak in magnitude and would be characterised by: representation of all trip movements; somewhat larger zones and less network detail than for the Area of Detailed Modelling; and speed/flow modelling (primarily link-based but possibly also including a representation of strategically important junctions);
- **External Area**: the area where impacts of interventions would be so small as to be reasonably assumed to be negligible and would be characterised by: a SATURN buffer network representing a large proportion of the rest of Great Britain, a partial representation of demand (trips to, from and across the Fully Modelled Area); large zones; skeletal networks and simple speed/flow relationships or fixed speed modelling.

In the OSM, the ADM covers the area bounded by:

- Bicester to the north;
- Wallingford to the east;
- Burford and Witney to the west; and
- Wantage and Didcot to the south.

The FMA covers the rest of Oxfordshire plus some hinterland area including Swindon, Reading, High Wycombe and Stratford-upon-Avon etc. The External Area covers the rest of Great Britain in a skeletal form.

The density of the network structure differs between the FMA and External Area as follows:

- within the FMA, all major A-roads, B-roads and motorway links are represented along with the main residential roads and access roads to major developments and car parks; whereas
- the External Area only included the major A-roads, B-roads and motorway networks with reducing detail further away from the FMA.

The FMA is coded in the SATURN simulation network (with explicit junction modelling) whilst the External Area is coded in SATURN buffer network. The level of detail and accuracy of the network decreases as progression is made from the ADM to the External Area.

Figure 3-1 - Area of Detailed Modelling and Fully Modelled Area for the OSM

3.2. Demand Segmentation

User Classes (UC) are used to describe the differing characteristics of vehicle users within the model. It is important that appropriate demand segmentation is applied to the assignment because the vehicle operating cost and value of time varies by different user classes. A total of seven user classes have been used to represent different trip purposes in the model as shown below in Table 3-1.

User Class	Vehicle Type	Purpose
1	Car	Home Based Employer Business
2	Car	Home Based Other
3	Car	Home Based Commute
4	Car	Non - Home Based Employer Business
5	Car	Non- Home Based Other
6	Light Goods Vehicles (LGV)	
7	Heavy Goods Vehicles (HGV)	

Table 3-1 - User Class Definition

3.3. PCU Factors

Passenger Cars Units (PCUs) are used as a standard unit in SATURN for demand and capacities. This allows the effect of longer/slower vehicles that occupy more road space and take longer time to clear junctions to be represented within the model. The vehicle to PCU conversion factors used for the various user classes are summarised in Table 3-2.

Vehicle Type	Description	PCU Factor
Car	Private Car	1.00
Bus	All Bus Types	2.50
LGV	Goods vehicle using car-based chassis	1.00
HGV ²	OGV1 and OGV2 (Rigid and Articulated)	2.30

Table 3-2 - PCU Conversion Factors

3.4. Assignment Methodology

SATURN version 11.5.05N is used for highway assignment. SATURN uses the SATALL module to iterate between successive loops of the SATASS module (which assigns the user class matrices to the network in accordance with Wardrop's First Principle of Traffic Equilibrium using the Frank-Wolfe algorithm) and the SATSIM module (which takes the flows derived by SATASS and calculates the revised flow/delay relationships at each junction within the simulated area) until the resulting travel times and flows do not change significantly.

The process starts with SATASS using the free-flow times (without any delays arising from vehicle interactions at the simulated junctions) from the network building program, SATNET. After the first set of path-builds in SATASS, the resulting flows are passed to SATSIM for the turn-based flow/delay curves representing the detailed interactions at each junction to be updated. These revised flow/delay relationships are passed back to SATASS for the travel time and flows to be recalculated.

In order to cut down on the assignment run time, the SPIDER network function is adopted. "Network aggregation (SPIDER) is a technique whereby links and/or nodes in the basic assignment network may be combined together into an equivalent set of aggregated

² TAG unit M3.1; Section D.7.2 provides two PCU values for HGV's: either 2.5 for HGVs on motorways and allpurpose dual carriageways or 2.0 for all the other road types.

links/nodes with the objective of reducing the cpu time required to carry out the basic assignment steps of tree building and loading." (SATURN user-manual, para 15.56.1)

3.5. Generalised Cost

The route choice within the highway assignment model is modelled using the generalised cost of travel time, vehicle operating cost and tolling / congestion charging in accordance with the TAG Unit A1.3. This is to make it compatible with the demand model which also uses generalised costs. The coefficients for the individual components of generalised costs were calculated using TAG Unit A1.3.

The model base year is 2018 with all monetary values calculated at 2010 prices.

3.5.1. Values of Time

Perceived values are used throughout. The process is summarised below:

- equivalent 2018 values are calculated by applying the specified growth in working and non-working values of time (Annual Parameters in TAG Unit A1.3);
- the relative proportions of Car Non-work for 'Other' and 'Commuting' are calculated from the RSI surveys³;
- the equivalent values for vehicles were calculated by applying the occupancies obtained from the RSI surveys;
- HGV travel is assumed to be in work time; and
- the values are converted from pounds per hour to pence per minute.

3.5.2. Vehicle Operating Costs

Vehicle Operating Costs are calculated using TAG A1.3 and defined separately for fuel and non-fuel elements before being combined for the use in the SATURN assignment. Non-fuel costs are only taken into consideration by travellers in work-time, with the split between OGV1 and OGV2 recorded from the RSI surveys.

3.5.2.1. Fuel Costs

The consumption of fuel (in litres per km), adjusted by the fuel efficiency factors, is multiplied by the cost per litre to provide the cost per km in the model base year. Fuel duty for all trip purposes is included in the calculations as a perceived cost as businesses are not able to reclaim it. However, VAT is excluded from the perceived cost of work trips because businesses are able to recover it. For non-work purposes, the perceived cost of the fuel Vehicle Operating Cost was the market price.

3.5.2.2. Non-Fuel Costs

The non-fuel cost element is derived using the formulae set out in TAG A1.3 (Table A1.3.14) and is a function of average network speed. The non-fuel costs are assumed to remain constant, in real terms, over time. As noted above, the non-fuel cost element is only included for work trips.

³ Detailed information can be found in the "5125364-OSM-Data Collection Report_v3.2.docx" issued in December 2020.

3.5.3. Assignment Parameters

The resulting cost coefficients of PPK (pence per km) and PPM (pence per minute) calculated later based on TAG Databook v1.17 November 2021 are presented in Table 3-3 below.

User Class	AM Peak		Inter-Peak		PM Peak	
	PPM	PPK	PPM	PPK	PPM	PPK
Car – Home based EB	30.65	12.73	31.40	12.73	31.09	12.73
Car – Home based Other	14.18	6.35	15.10	6.35	14.85	6.35
Car – Home based	20.55	6.35	20.89	6.35	20.62	6.35
Commute						
Car – Non-Home based EB	30.65	12.73	31.40	12.73	31.09	12.73
Car – Non-Home based	14.18	6.35	15.10	6.35	14.85	6.35
Other						
LGV	22.21	13.98	22.21	13.98	22.21	13.98
HGV	22.12	37.97	22.12	37.97	22.12	37.97

 Table 3-3 - Base Year 2018 PPM and PPK Values by User Class and Time Period

Source: TAG Databook v1.17 released in November 2021

3.6. Capacity Restraint

Capacity restraint is modelled in the FMA (i.e. simulation area) predominantly through junction modelling. All modelled junctions in this area are allocated a junction type, with capacities for each turn, lane allocations and traffic signal timings for roundabouts, priority and signalised junctions respectively. The capacity of a junction is therefore determined by the junction arm capacities.

There are also capacity restraints on the links, through the usage of capacity controls such as speed-flow curves and saturation flows, where appropriate, to simulate observed conditions. However, it should be noted that speed-flow curves are only implemented on a subset of links.

4. The Public Transport Assignment Model

4.1. Network Structure

The public transport assignment model (PTAM) has been developed to represent two public transport modes:

- bus; and
- rail.

In addition, the model also includes a bus-based Park and Ride mode.

For the bus mode, the OSM PTAM inherits the network structure from the OSM HAM. The rail network has been coded separately to represent all rail lines in the Fully Modelled Area and its hinterland.

4.2. Demand segmentation

The public transport assignment uses a single user class.

4.3. Assignment Methodology

The Public Transport Assignment Model uses the standard transit assignment implemented in EMME, i.e. a multipath assignment, based on the computation of optimal strategies.

4.4. Generalised Cost Formulations and Parameter Values

The generalised cost function used for the public transport assignment routing, measured in units of time (minutes), is given by:

 $G_{PT} = V_{wk}^*A + V_{wt}^*W + T + B$

Where:

- *Vwk* is the weight applied to time spent walking (walk time weight);
- A is the total walking time to and from the services and during an interchange;
- *Vwt* is the weight applied to time spent waiting;
- W is the total waiting time for all services used on the journey;
- T is the total in-vehicle time; and
- *B* is the total boarding penalty applied for each service boarded on the journey.

The public transport assignment model uses parameters based on those provided in TAG Unit M3-2, which in turn are derived from work undertaken by the Institute of Highways and Transportation to establish guidelines for urban transport strategies and further work commissioned by the DfT on the value of travel time savings. Further details, including the various references, may be found in the TAG Unit.

In the OSM demand model framework, the standard transit assignment in EMME (module 5.11 and 5.31) is used for both rail and bus assignment. Typically, the cost inputs for deriving attractive lines in the PT assignments include effective headway and boarding time penalties, as well as the factors and weights in association with each cost element. In the OSM, for the actual line headway for PT assignment a global waiting time factor of 0.5 is assumed (half of the effective headways). This is probably not a major issue for PT

assignment if the waiting time for every PT service is treated in the same way. However, with a weight of 2.5⁴ against in-vehicle ride time, the waiting time saving from an improved PT service such as increased frequency will be significantly over-estimated.

In view of this, a new approach was implemented based on the PDFH⁵ Section B Table B4.8, which shows the average service interval penalties by rail service coverage for a headway from 5 minutes to 180 minutes, as extracted below (see Table 4-2). Assuming there is no boarding penalty applied, it can be reasonably assumed that the penalty is equivalent to passenger's average waiting time⁶, combined with the cases when passengers arrive at a stop randomly or pre-planned against timetables.

The parameter values for assignment are set out below.

Table 4-1 - Assignment Parameters

Parameter	Value
Wait time factor	PDFH curve
Wait time weight	2.5
Walk time weight	2.0
Boarding penalty (Adjusted as part of the calibration process)	0 to 25

Boarding penalty (Adjusted as part of the calibration process) | 0 to 25

Table 4-2 - PDFH waiting time

Table B4.8 Average Service Interval Penalties (in minutes) for Different Flow Types

	Equivalent Time Penalty						
Service	London	Non-London	London	Non-London	Non-London		
Interval	InterCity	inter-urban	SE area	SE area	urban		
5	5	5	5	5	5		
10	10	10	10	10	10		
15	14	14	14	14	14		
20	18	18	19	18	18		
30	24	23	25	24	24		
40	27	26	29	27	28		
60	33	31	36	33	35		
90	43	39	46	43	45		
120	52	47	57	52	55		
180	70	63	78	70	74		

Source: Passenger Demand Forecasting Handbook

⁴ As suggested in TAG M3.2 Para. 3.1.5, the waiting time weight is 1.5-2.5 times in-vehicle time.

⁵ Passenger Demand Forecasting Handbook

⁶ Note that this is the waiting time in terms of in-vehicle ride time equivalence, i.e. after applying the waiting time to invehicle time weight, which is 2.5 assumed in the OSM demand model.

4.5. Fares

The public transport sub-mode choice (i.e. Bus vs Rail) is undertaken within the VDM, based on the standard TAG generalised cost formulation (which includes fares). The PTAM (assignment) does not consider the impact of fares. The PTAM determines the route choice (within each mode) and whilst there will be some influence of fares, it is unlikely to be significant, because:

- Bus Services in Oxfordshire are provided principally by Stagecoach, Oxford Bus Company and Thames Travel. Typically, a competitive stage-based fare system with a range of day and season ticket types is provided by each bus operator, which limits passenger's choice to choose alternative routes in order to reduce fare costs. Meanwhile rail fares are distance-based, and the P&R mode has a flat fare system;
- The choice of route is sensitive to the relative difference in the generalised journey costs between route alternatives rather than the absolute journey costs, and the influence of fare is small compared to the weights attached to In-Vehicle Time, Wait Time and penalties for boarding services during interchanges;
- There are several ticket types such as day returns and season tickets which are purchased independently of route choice; and
- The fare differentials between realistic competing routes for the same O-D pair will be small.

Additional information on public transport fares is separately reported within the "OSM Demand Model Development Report - Review 2020_Issued 04012021" (see section 3.4 Generalised Cost Formulation).

4.6. Bus Journey Times

The underlining road network is created from the OSM HAM. This enables a linkage to be established between highway travel times and bus travel times such that, in forecasting mode, the impact of increasing or reducing congestion levels on bus travel times is represented.

This linkage also allows the impact on bus journey times of new bus lanes and bus priority measures at junctions to be modelled. At the same time, the HAM models the effects of capacity reduction on general traffic, and the impact that this has, in turn, on bus journey times. Further details of the mechanism used are given in Appendix A of "OSM Public Transport Model Report - Update_Jan2021_v5.3 final" issued in January 2021.

5. Highway Model Standards

OSM is a large, county-wide strategic multi-mode model, and it is common to find the need to undertake localised calibration and validation prior to testing a major scheme in the model. The OSM highway assignment model update to assess Oxford schemes has been developed in accordance with guidance in TAG M3.1, Highway Assignment Modelling⁷.

5.1. Validation Criteria and Acceptability Guidelines

The validation of a highway assignment model should include comparisons of the following:

- Assigned flows and counts totalled for each screenline or cordon, as a check on the quality of the trip matrices;
- Assigned flows and counts on individual links and turning movements at junctions as a check on the quality of the assignment; and
- Modelled and observed journey times along routes, as a check on the quality of the network and the assignment.

5.2. Flow Calibration

Two measures from the TAG Validation criteria have been used for individual link Calibration: (a) flow difference; and (b) the Geoffrey E. Havers (GEH) measure. The traffic flow difference is based on the relative flow difference between modelled flows and observed counts, with three different criteria set depending on the scale of the observed counts. The GEH statistic, which is a form of the Chi-squared statistic that incorporates both relative and absolute errors, and is defined as follows:

GEH =

Where: M is the modelled flow; and

C is the observed flow.

These two measures are broadly consistent and link flows that meet either criterion should be regarded as satisfactory. The validation criteria and acceptability guidelines for the link flows and turning movements as given in TAG Unit M3.1 are defined in Table 5-1 below.

Criteria	Description	Acceptability Guideline
1	Individual flows within 100 veh/h of counts	> 85% of cases
	for flows less than 700 veh/h	
	Individual flows within 15% of counts for	> 85% of cases
	flows from 700 to 2,700 veh/h	
	Individual flows within 400 veh/h of counts	> 85% of cases
	for flows of more than 2,700 veh/h	
2	GEH <5 for individual flows	> 85% of cases

Table 5-1 - Flow Validation Criterion and Acceptability Guidelines

Source: TAG Unit M3.1 Table 2

⁷https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/427124/web tag-tag-unit-m3-1-highway-assignment-modelling.pdf

Regarding flow validation, the following should be noted:8

- The above criteria should be applied to both link flows and turning movements;
- The acceptability guideline should be applied to the link flows but may be difficult to achieve for turning movements;
- The comparisons should be presented for cars and all vehicles but not for light and other goods vehicles unless sufficiently accurate link counts have been obtained;
- The comparisons should be presented separately for each modelled period; and
- It is recommended that comparisons using both measures are reported in the model validation report.

5.3. Journey Time Validation

Journey time validation compares the percentage difference between modelled and observed journey times, subject to an absolute maximum difference. TAG Unit M3.1 describes the criteria and guidelines, as shown in Table 5-2 below.

Table 5-2 - Journey Time Validation Criterion and Acceptability Guidelines

Criterion	Acceptability Guideline
Modelled times along routes should be within 15% of surveyed times (or 1 minute, if higher than 15%)	> 85% of routes

Source: TAG Unit M3.1 Table 3

Regarding journey time validation, the following should be noted: 9

- It is expected that separate speed/flow relationship and /or link speeds are used for light and other vehicles; hence comparisons should be presented for light and other vehicles separately; otherwise, the comparisons should be presented for all vehicle types together^{;10}
- For validation of journey times by vehicle types, it will be necessary to obtain journey times by vehicle type to a level of accuracy which will allow a meaningful validation; if journey times by vehicle type are not available but separate speed/flow relationships for light and heavy vehicles have been used, a weighted average of the modelled light and heavy vehicle speeds should be compared with the surveyed all-vehicle speed; and
- The comparisons should be presented separately for each modelled period.

⁸ TAG Unit M3.1 Highway Assignment Modelling, May 2020 (Page 20).

⁹ TAG Unit M3.1 Highway Assignment Modelling, May 2020 (Page 21).

¹⁰ The validation of the journey times in OSM was done for all vehicle types together.

5.4. Convergence Measures and Acceptable Values

The most appropriate convergence measures (of proximity and stability) and the values generally considered acceptable for use in establishing a base model as given in TAG Unit M3.1 are reported below in Table 5-3.

Table 5-3 - Summary of Convergence Measures and Base Model Acceptable Values

Measure of Convergence	Base Model Acceptable Values
Delta and %GAP	Less than 0.1% or at least stable with convergence fully
	documented and all other criteria met
Percentage of links with flow	Four consecutive iterations greater than 98%
change (P) < 1%	
Percentage of links with cost	Four consecutive iterations greater than 98%
change (P2) < 1%	
Percentage change in total user	Four consecutive iterations less than 0.1% (Stochastic
costs (V)	User Equilibrium only)
Source: TAG Unit M3.1 Table 4	

6. Calibration Data

Model Calibration refers to the process of refining and confirming the values of model parameters and improving origin-destination movements in the demand matrices to improve the overall model performance by benchmarking against the data collated as part of this study.

6.1. Data Collection

To help inform an understanding of traffic levels and trip patterns in the study area, a range of data was collected and collated. This data was used to develop the model as well as model calibration. This chapter summarises the data used for model development. The data sources presented in this chapter include:

- Spatial distribution of the commuting trips to Eastern Arc
- Traffic Counts:
 - Automatic Traffic Counts (ATC)
 - Manual Classified Counts (MCC)
- 2018 TomTom journey time data
- 2021 Automatic Number Plate Recognition (ANPR)
- Traffic growth 2013 to 2019.

6.2. Spatial distribution of the commuting trips to Eastern Arc

A survey of the major employers in the Eastern Arc was undertaken in October 2017. The survey aimed at identifying the post codes of the employees who were commuting to each of the sites.

Figure 6-1 - Location of the employers who answered the survey

6.3. Traffic Data Collated

Traffic count data was required to identify observed traffic flows on key links and junctions in the study area for use in the base model calibration process. Observed traffic count data (one week, two week and one-year Automatic Traffic Counts (ATC) and single day Manual Classified Counts (MCC)) from years 2017 and 2018 was collated from a variety of sources. A summary of the traffic data collated is presented in Table 6-1 below. The geographical location of the traffic count data types is presented in Figure 6-2 It should be noted that the blue stars in the figure represent Air Quality (AQ) monitoring sites, which were used only to understand their proximity to the count sites.

Table 6-1 - 2019 Traffic Counts Collated as part of the Model Update

Count Type	Number of Counts
ATC	16
MCC	44

All the traffic count sites for which data collection was undertaken in 2017 has been adjusted back to a common base year of 2018 based on the adjustment factors already used in OSM. Some of the data allowed forming three concentric cordons (Inner, City Centre and Outer cordons). Given the significant number of sites left outside these cordons, they were used as an ad-hoc set in the calibration.

Figure 6-2 - Traffic Counts Locations

6.4. Journey Time Data

It is a requirement of the model validation process that the modelled speeds fall within an acceptable range of observed speeds. For this purpose, TomTom data was obtained and processed for the analysis of journey times in the study area.

Average neutral weekday data was analysed along 4 routes which are presented graphically in Figure 6-3 below for the month of March 2018 excluding bank and school holidays. Journey time route descriptions are given in Table 6-2. For routes 1, 2 and 3 the median observed time was used. For route 4 the mean observed time was used (the data for this route was obtained and process for a prior study).

Journey Time Route	Route Name	Direction	Distance (in KM)
Route 1	A423/A4144 Kennington Rbt to	NB	8.18
	A40/Banbury Rd Rbt	SB	8.26
Route 2	A420/A34 Botley Interchange to	EB	3.89
	A420/Brewer Street Jct	WB	3.87
Route 3	High Street/Longwall St Jct to	EB	4.35
	A40/A4142/A420	WB	4.38
Route 4	A40	EB	18.67
		WB	18.90

Table 6-2 - Journey Time Routes

Figure 6-3 - Journey Time Routes

6.5. ANPR data

The surveys were carried out on 13th and 14th October 2021, and the results are for:

- the AM peak hour of 08:00-09:00;
- Average IP hour (between 1000 and 16:00);
- the PM peak hour of 17:00-18:00.

Figure 6-4 shows the ANPR camera location. In the result tables, "chain_start" is the start camera location and direction, "chain_end" is the destination camera and direction, the count is the average hour over the 2 days, and the "percent of count" is the percentage of vehicles at the start camera matched at the destination camera (or unmatched).

01 - Woodstock Road A4144 02 - Banbury Road A4165 03 - Marsh Lane B4150 04 - London Road A420 05 - Horspath Driftway 06 - Garsington Road B480 07 - Blackbrid Leys Road 08 - Rose Hill A4158 09 - Abingdon Road A4144 10 - Botley Road A420 11 - Kingston Road 12 - Woodstock Road A4144 13 - Banbury Road A4165 14 - Magdalen Bridge A420 15 - Folly Bridge A4144 16 - Osney Bridge A420 17 - Marston Ferry Road B4495 18 - Windmill Road B4495 19 - Gipsy Lane 20 - Warneford Lane 21 - London Place A420 22 - Hollow Way B4495 23 - John Radciffe Hospital 24 - Churchill Hospital (Churchill Drive) 25 - Churchill Hospital (Roosevelt Drive) 26 - Westgate Car Park

Figure 6-4 - Location of the ANPR cameras

7. Highway Network Update

7.1. Network Coverage

Links were added to the existing network within the area of detailed modelling to ensure the road network was represented in suitable detail. The additional links added as part of the model update are shown in Figure 7-1 below. The majority of changes in the network are in the vicinity of smaller roads and represent a simplification of several local parallel streets, e.g. Jeune St, James St or South Parade. The network was also changed in the vicinity of Westgate Shopping Centre, which opened in 2018.

Figure 7-1 - Network update on the 2018 Base Year Model

The existing network coding was reviewed against the latest information available from internet based on 2018 aerial imagery for the following attributes:

- Junction type and layout;
- Number of lanes per arm and turn allocations;
- Turn saturation flows;
- Link lengths;
- Speeds;
- Gap acceptance parameters;
- Speed flow curve;
- Zone centroid connectors; and
- Banned turns.

7.2. Junctions

A small number of junctions were added to the network to cater for the additional links to the updated 2018 model. A sample of the junctions were checked for accuracy to model year 2018 conditions.

7.3. Free Flow Speed

Free flow speeds were reviewed against the posted speed limit observed from internet based aerial imagery to maintain consistency in the model and to help in the calibration process.

7.4. Signal Timings

The signal timings for the signalised junctions were maintained mostly consistent from the 2013 OSM. However, some of the signalised junctions where large delays were observed have been optimised to provide better model performance and/or improve journey time calibration.

7.5. Zone Centroid Connectors

Demand is loaded onto the network using centroid connectors at appropriate locations to enable traffic to realistically enter and exit the network. The existing zone centroid connectors in the study area have been retained from the 2013 OSM.

7.6. Public transport Routes and Services

The bus routes and frequencies are coded as fixed routes which take away from the capacity available for the general traffic.

7.7. Traffic Restrictions

Traffic restrictions coded in the 2013 OSM were updated.

8. Trip ends comparison

The results of the survey of the number employees of major employers in the Eastern Arc, undertaken in October 2017, was made available to Atkins. The data did not contain number of trips but as the number of employees bears a strong correlation to the number of commuting trips, this data facilitated a comparison to the trip ends for home-based work trips included in OSM. The survey results were not accompanied by a report explaining details of the survey, sample size, sampling fraction, etc. Given that the biggest employers (Oxford University Hospital Trust, University of Oxford, and BMW) have responded to the survey, the data was considered suitable for a comparison with the modelled demand, although it was not used for calibration of OSM.

For consistency in analysis, both the OSM zones and the answers from the survey have been aggregated at postal district level, shown in the figure below.

Figure 8-1 - Boundaries of the postal districts in Oxfordshire

Source: https://en.wikipedia.org/wiki/File:OX_postcode_area_map.svg

Information about the transport mode used by the employees was not available. Consequently, the comparison in OSM was undertaken at aggregated level, over a 12-hour period and for all modes.

Figure 8-2 compares the percentage of employees resident in each postal district with the trip ends for all purposes (and modes) in OSM and shows a very similar pattern. Figure 8-3 compares the percentage of employees resident in each postal district with the trip ends for home-based work (HBW) in OSM and also shows a similar pattern. In both cases, the main differences appear for postal districts OX1, OX3 and OX4. Due to their closeness to Eastern Arc, it is thought that the difference is due to OSM not including pedestrian and cycling trips, which are more likely for short distance journeys thus OSM produces an underestimate of trips.

Figure 8-2 - Comparison of trips at 12-hour period level (all purposes)

Figure 8-3 - Comparison of trips at 12-hour period level (HBW)

9. Analysis of growth 2013 to 2019

Aggregated data on the growth in trips was made available by OCC to allow the understanding of the evolution of the growth in demand in Oxfordshire, and how it compares with the modelled results.

A comparison between observed growth and modelled growth was undertaken for the Outer Cordon and the Inner Cordon as defined in Figure 6-2. It should be noted that this comparison was done before performing the final calibration of the HAM, with the objective of understanding whether the calibration was necessary.

Table 9-1 shows the comparison of the observed and modelled data for the Inner Cordon. There are some significant changes on Kingston Rd and Woodstock Rd (blue rows in the table below) which are mainly due to re-routing, not changes in demand, as can be seen in Figure 9-1 and Figure 9-2. By aggregating these two rows together (similar to a screenline), the changes between 2013 and 2019 are significantly closer to the observed ones. For all sites together, the difference between observed and modelled is not high.

Site	% Change (observed)			% Change (modelled)				
	0800 - 0080	1100 - 1200	1700 - 1800	0700 - 1900	0800 - 0080	Average IP	1700 - 1800	0700 - 1900
Banbury Road	-20%	-11%	-15%	-13%	4%	31%	33%	N/A
Magdalen Bridge	20%	8%	14%	14%	-16%	-12%	-7%	N/A
Folly Bridge	-17%	-7%	-17%	-11%	-6%	-3%	-3%	N/A
Osney Bridge	0%	3%	-16%	-2%	6%	6%	21%	N/A
Kingston Road	-21%	-8%	-17%	-14%	-70%	-76%	-73%	N/A
Woodstock Road	19%	5%	5%	6%	221%	100%	71%	N/A
All sites	-3%	-1%	-7%	-2%	-2%	3%	4%	N/A
Kingston Rd + Woodstock Rd	9%	2%	0%	1%	6%	7%	-11%	N/A

Гable 9-1 - Com	parison of gro	wth of car trips	s at the Inne	r Cordon
-----------------	----------------	------------------	---------------	----------

Figure 9-1 - Changes in routing between 2013 and 2018 models – Inner Cordon – AM peak hour

Figure 9-2 - Changes in routing between 2013 and 2018 models – Inner Cordon – PM peak hour

Table 9-2 shows the comparison of the observed and modelled data for the Outer Cordon. There are some significant changes on Banbury Rd and Woodstock Rd (blue rows in the table below) which are mainly due to re-routing, not changes in demand, as can be seen in Figure 9-3. By aggregating these two rows together (similar to a screenline), the changes

between 2013 and 2019 are significantly closer to the observed ones. For all sites together, the difference between observed and modelled is not high. A similar situation happens for Abingdon Rd and Botley Rd (orange rows in the table below) which are also due to rerouting, not changes in demand. However, this is less obvious from a simple flow difference plot (see Figure 9-4). This specific issue has been analysed in detail during the 2018 calibration.

Site	% C	Change (observed) % Change (modelled)					% Change (modelled)		
	0800 - 0900	1100 - 1200	1700 - 1800	0700 - 1900	0800 - 0900	Average IP	1700 - 1800	0700 - 1900	
Banbury Road	-2%	-8%	32%	2%	-28%	-7%	-21%	N/A	
Marsh Lane	6%	-9%	-11%	-8%	16%	15%	6%	N/A	
The Slade	-2%	8%	1%	4%	-1%	-3%	7%	N/A	
Garsington Road	19%	3%	-4%	-1%	8%	4%	7%	N/A	
Rose Hill	8%	8%	10%	10%	7%	5%	21%	N/A	
Abingdon Road	-37%	-27%	-27%	-28%	-3%	0%	-7%	N/A	
Botley Road	10%	2%	3%	3%	13%	12%	20%	N/A	
Woodstock Road	10%	7%	-1%	8%	41%	16%	-8%	N/A	
All sites	0%	-3%	-2%	-2%	6%	6%	3%	N/A	
Banbury Rd + Woodstock Rd	4%	-1%	13%	5%	7%	6%	-13%	N/A	
Abingdon Rd + Botley Rd	-16%	-12%	-12%	-12%	5%	6%	6%	N/A	

Figure 9-3 - Changes in routing between 2013 and 2018 models – Woodstock Rd & Banbury Rd – AM peak hour

Figure 9-4 - Changes in routing between 2013 and 2018 models – Botley Rd & Abingdon Rd – AM peak hour

All the coding aspects that influenced the routing (as detailed above) have been addressed during the calibration process that followed. In most cases, the solution was down to signal timing optimisations.

10. Highway Trip Matrix Development

This chapter summarises the approach adopted in previous model versions to improve the base year trip matrices, followed by further revisions specifically for the update to model Oxford schemes.

10.1. Background to Matrix Building Methodology

The 2018 Present Year Validation (PYV) matrices were used as the starting point for developing the 2018 Oxford model matrices. Additional information on how this scenario was built can be found in the report "OSM HAM Development Report - Review2021 - Rev 4.0" issued in January 2021.

The 2018 PYV matrices were not representing the right level of demand in Oxford City. This task was undertaken prior to the current study A first step in calibration was undertaken in April 2021 and Matrix Estimation (ME) was used for all time periods. The impact of ME was shown to be within TAG requirements in terms of a number of criteria such as matrix totals, trip ends, cell values and trip length distribution.

A summary of the benchmark of criteria reviewed to check the extent of the changes due to ME is given in the table below. Overall, the matrices broadly meet all criteria across all time periods.

π.

Measure	Significance Criteria	AM	Inter Peak	РМ	
Matrix zonal cell levels	Slope within 0.98 <slope<1.02< td=""><td>Criteria met</td><td>Criteria met</td><td colspan="2">Criteria met</td></slope<1.02<>	Criteria met	Criteria met	Criteria met	
	Intercept near zero	Criteria met	Criteria met	Criteria met	
	R ² in excess of 0.95	Criteria met	0.94	Criteria met	
Matrix zonal trip ends	Slope within 0.99 <slope<1.01< td=""><td>Criteria met</td><td>Criteria almost met (0.97)</td><td>Criteria almost met (0.98)</td></slope<1.01<>	Criteria met	Criteria almost met (0.97)	Criteria almost met (0.98)	
	Intercept near zero	Criteria met	Criteria met	Criteria met	
	R ² in excess of 0.98	Criteria met	Criteria met	Criteria met	
Trip length distributions (trips less than 150km)	Means within 5%	Criteria met	Criteria almost met (5.6%)	Criteria met	
	Standard deviations within 5%	Criteria met	Criteria met	Criteria not met	
Sector to sector level matrices	Differences within 5%	n/a	n/a	n/a	

Table 10-1 - Matrix assessment summary (all vehicles)

i.

10.2. Select Link Infilling

When the present study started, it was felt that further improvement of the calibration was needed, but it was considered more proportionate to undertake selective matrix adjustment than a full matrix estimation (ME). This is especially because it is not prudent to carry out full ME on a matrix that was already subjected to ME. Hence it was agreed to update the demand using select link analysis (SLA) across the model area.

Some modelled links were selected to carry out the SLA adjustment. Those selected links were at the same locations as the observed link counts. For this reason, the observed data was used for calibration only. No additional data was available to also undertake a validation exercise.

The adjustment factors were calculated based on the post-ME flows on those links and the observed counts. These factors were specific to each of the adjusted links and were applied to the demand matrix that resulted from the select link analysis done on the post-ME network.

The matrix totals before and after applying the adjustment factors for all three time periods are presented in

Table 10-2 below. Most changes were within 4%, except for HGV in the PM peak and LGV in the AM and PM peaks.

			Time Period	
		AM	Inter Peak	РМ
Car	Prior (PYV)	96,752	70,306	114,446
	Post-ME	95,604	70,418	114,424
	Post-SLA	95,418	69,439	112,388
	% Change to PYV	-1%	-1%	-2%
	% Change to post-ME	0%	-1%	-2%
LGV	Prior (PYV)	13,293	9,633	10,147
	Post-ME	13,357	10,044	10,261
	Post-SLA	12,458	9,793	9,522
	% Change to PYV	-6%	2%	-6%
	% Change to post-ME	-7%	-2%	-7%
HGV	Prior (PYV)	7,219	6,414	3,429
	Post-ME	7,240	6,700	3,400
	Post-SLA	6,970	6,605	3,130
	% Change to PYV	-3%	3%	-9%
	% Change to post-ME	-4%	-1%	-8%
Total	Prior (PYV)	117,264	86,353	128,022
	Post-ME	116,201	87,162	128,085
	Post-SLA	114,846	85,837	125,040
	% Change to PYV	-2%	-1%	-2%
	% Change to post-ME	-1%	-2%	-2%

Table 10-2 - 2018 Model Update Matrix Totals

11. Highway Model Calibration

Model Calibration refers to the process of refining and confirming the values of model parameters and improving origin-destination movements in the demand matrices to improve the overall model performance by benchmarking against the data collated as part of this study.

11.1. Calibration for Oxford Model Updates

For the Oxford model update, all the available counts were used as link level calibration counts.

As a part of journey time validation, 4 two-way journey time routes were selected to cover the main strategic routes in the study area.

11.2. Calibration Procedure

The calibration procedure involved a series of steps designed to improve the performance of the model and ensure it simulates observed 2018 traffic flows. Calibration procedures included the following steps:

- Ensuring network characteristics, such as free-flow speeds and signal phases/timings represent observed conditions;
- Ensuring capacity controls such as speed-flow curves, saturation flows and turn capacities were appropriate to simulate observed conditions;
- Checking the routing of vehicles in the model by verifying routes from the highway model against internet-based route planners.

Each of the above are presented in the following sections. The final section presents the levels of model convergence achieved.

11.3. Flow Calibration Results

Table 11-1 shows the results of individual links used in the calibration process which meet TAG criteria for each time period.

Time Period	Inside City Centre Counts passing TAG Criteria	Inner Cordon Boundary Counts passing TAG Criteria	Outer Cordon Boundary Counts passing TAG Criteria	Ad Hoc Links passing TAG Criteria	Total Links passing TAG Criteria
AM Peak	100%	94%	100%	94%	96%
Inter Peak	100%	100%	100%	94%	98%
PM Peak	100%	100%	100%	94%	98%

Table 11-1 - Link Calibration Summary

All the three peaks exceed TAG flow criteria of 85% of links passing with the Inter Peak and PM reaching 98% and AM peak with 96%. Appendix A presents the results of all individual links used in calibration.

Figure 11-1 to Figure 11-3 present the calibration links that are passing/failing the TAG criteria. In all time periods, the link North on Wolvercote Roundabout towards Peartree Interchange fails. However, priority was given during the calibration to the links located inside the ring road, in this specific case, Woodstock Road south of Wolvercote Roundabout.

In AM peak, Magdalen Bridge also fails. Given that the other links in the area pass, it is probable that problem appears due to the spatial distribution of the trips in the area and not the total number of trips. Additionally, the GEH for this particular link is 5.9 so it's failing by a small margin.

Figure 11-1 - Link Flow Calibration - AM Peak

Figure 11-3 - Link Flow Calibration - PM Peak

2 km

11.4. Journey Time Validation

As described in Section 6.4, all journey time routes were validated against 2018 TomTom journey time data. The journey time routes are originally shown in Figure 6-3 and repeated below for ease of reference.

Modelled journey times are compared against observed data in each of the modelled periods. Summaries of the observed and modelled journey time comparisons for each route are provided for the AM peak, Inter-peak and PM Peak from Table 9-2 to Table 9-4. Time-distance plots for all routes, directions and time periods are presented in Appendix B.

Figure 11-4 - Journey Time Routes

Journey Time Route	Route Name	Direction	Observed (mins)	Obs +15%	Obs - 15%	Modelled (mins)	Pass/Fail
Route 1	A423/A4144	NB	22	25	18	20	Pass
	Kennington Rbt to A40/Banbury Rd Rbt	SB	20	23	17	17.	Pass
Route 2	A420/A34 Botley	EB	12	13	10	12	Pass
	Interchange to A420/Brewer Street Jct	WB	8	9	7	9	Pass
Route 3	High Street/Longwall St Jct to A40/A4142/A420	EB	9	10.67	8	10.83	Criteria almost met
		WB	15	17	12.45	12.38	Criteria almost met
Route 4	A40	EB	28	33	24	23	Fail
		WB	24	27	20	20	Pass

Journey Time Route	Route Name	Direction	Observed	Obs +15%	Obs - 15%	Modelled	Pass/Fail
Route 1 A4 K0 to	A423/A4144 Kennington Rbt to A40/Banbury Rd Rbt	NB	16	19	14	18	Pass
		SB	17	20	15	19	Pass
Route 2 A4 Int A4 Str	A420/A34 Botley	EB	8	9	7	10	Fail
	Interchange to A420/Brewer Street Jct	WB	8	9	7	10	Fail
Route 3	High Street/Longwall St Jct to	EB	9	10.36	8	10.52	Criteria almost met
	A40/A4142/A420	WB	10	11.11	8	11.38	Criteria almost met
Route 4	A40	EB	18	21	15	20	Pass
		WB	18	20	15	20	Pass

 Table 11-3 - Inter Peak Journey Time Validation Summary

Table 11-4 - PM Peak Journey Time Validation Summary

Journey Time Route	Route Name	Direction	Observed	Obs +15%	Obs - 15%	Modelled	Pass/Fail
Route 1	A423/A4144	NB	20	23	17	18	Pass
Kenning to A40/ Rd Rbt	Kennington Rbt to A40/Banbury Rd Rbt	SB	21	25	18	19	Pass
Route 2 A420 Inter A420 Street	A420/A34 Botley	EB	9	10	7	9	Pass
	Interchange to A420/Brewer Street Jct	WB	11	12	9	10	Pass
Route 3	High Street/Longwall St Jct to A40/A4142/A420	EB	16	18	13	11	Fail
		WB	13	14	11	12	Pass
Route 4	A40	EB	24	27	20.18	19.83	Criteria almost met
		WB	32	37	28	19	Fail

As detailed in the above tables, the modelled journey time routes perform relatively well against TAG criteria for journey time validation, (of 85% within +-15%), by achieving 88% in the AM and 75% in both IP and PM.

11.5. Turning movement calibration

The ANPR data was used for the calibration of the turning movements at both ends of Marston Ferry Road, although this is not a requirement for a strategic model of this size. It was assumed that the unmatched trips, i.e. only the entry or the exit was matched with an ANPR camera, started or finished at a zone located in between the cameras. Given the high percentage of unmatched trips, this additional step introduces a degree of uncertainty regarding the observed flows.

A	NPR	e	۲	Obs	serve	ed Co	ounts	Modelled Flow			/	DMRB		
From	To	Turn typ	Directio	Car	LGV	HGV	Total	Total	Diff	% Diff	GEH	Flow	GEH	
17	13	Left	WB	271	34	23	328	261	-67	-20%	3.9	\checkmark	\checkmark	
17	12_1	Straight	WB	94	9	6	109	96	-12	-11%	1.2	\checkmark	\checkmark	
17	2	Right	WB	65	7	5	77	74	-3	-4%	0.4	\checkmark	\checkmark	
13	12_1	Left	NB	63	1	1	65	41	-24	-36%	3.2	\checkmark	\checkmark	
13	2	Straight	NB	164	18	12	193	462	269	139%	14.8	×	×	
13	17	Right	NB	202	32	22	255	182	-73	-29%	5.0	\checkmark	\checkmark	
2	17	Left	SB	169	14	9	192	88	-104	-54%	8.8	×	×	
2	13	Straight	SB	372	55	37	464	401	-63	-14%	3.0	\checkmark	\checkmark	
2	12_1	Right	SB	128	10	7	145	0	-145	-100%	17.0	×	×	
12	1	Straight	NB	244	21	14	279	291	12	4%	0.7	\checkmark	\checkmark	
12	2_17_13	Right	NB	153	26	17	196	123	-73	-37%	5.8	\checkmark	×	
1	2_17_13	Left	SB	170	28	19	217	86	-131	-60%	10.6	×	×	
1	12	Straight	SB	358	34	23	415	545	130	31%	5.9	×	×	

Table 11-5 - Results of turning movements calibration - AM peak hour

A	ANPR			Obs	Observed Counts			Modelled Flow				DMRB	
From	To	Turn type	Directic	Car	LGV	HGV	Total	Total	Diff	% Diff	GEH	Flow	GEH
17	13	Left	WB	195	43	31	269	227	-43	-16%	2.7	\checkmark	\checkmark
17	12_1	Straight	WB	74	19	14	106	105	-2	-2%	0.2	\checkmark	\checkmark
17	2	Right	WB	64	12	9	85	120	35	41%	3.5	\checkmark	\checkmark
13	12_1	Left	NB	34	11	8	54	40	-14	-26%	2.1	\checkmark	\checkmark
13	2	Straight	NB	160	41	30	230	321	90	39%	5.4	\checkmark	×
13	17	Right	NB	175	30	22	227	254	27	12%	1.8	\checkmark	\checkmark
2	17	Left	SB	75	14	10	98	53	-45	-46%	5.2	\checkmark	×
2	13	Straight	SB	237	55	40	332	219	-112	-34%	6.8	×	×
2	12_1	Right	SB	49	11	8	69	0	-69	-100%	11.8	\checkmark	×
12	1	Straight	NB	226	50	37	313	400	87	28%	4.6	√	\checkmark
12	2_17_13	Right	NB	108	23	17	148	90	-59	-40%	5.4	\checkmark	×
1	2_17_13	Left	SB	74	24	17	115	74	-41	-36%	4.2	\checkmark	\checkmark
1	12	Straight	SB	219	41	30	291	348	57	20%	3.2	\checkmark	\checkmark

A	ANPR	e	Ę	Obs	serve	ed Co	ounts	Modelled Flow			/	DMRB		
From	To	Turn typ	Directio	Car	LGV	НGV	Total	Total	Diff	% Diff	GEH	Flow	GEH	
17	13	Left	WB	217	8	2	227	287	60	26%	3.7	\checkmark	\checkmark	
17	12_1	Straight	WB	101	15	5	120	106	-15	-12%	1.4	\checkmark	\checkmark	
17	2	Right	WB	139	13	4	157	117	-40	-25%	3.4	\checkmark	\checkmark	
13	12_1	Left	NB	59	3	1	63	52	-10	-16%	1.4	\checkmark	\checkmark	
13	2	Straight	NB	211	19	6	236	467	231	98%	12.3	×	×	
13	17	Right	NB	234	17	5	257	300	43	17%	2.6	\checkmark	\checkmark	
2	17	Left	SB	82	11	3	97	31	-66	-68%	8.2	\checkmark	×	
2	13	Straight	SB	314	23	7	345	227	-118	-34%	7.0	x	×	
2	12_1	Right	SB	65	2	1	68	0	-68	-100%	11.6	\checkmark	×	
12	1	Straight	NB	292	22	7	321	356	35	11%	1.9	\checkmark	\checkmark	
12	2_17_13	Right	NB	172	15	5	192	92	-100	-52%	8.4	\checkmark	x	
1	2_17_13	Left	SB	85	13	4	102	57	-45	-44%	5.0	\checkmark	×	
1	12	Straight	SB	290	17	5	312	339	28	9%	1.5	\checkmark	\checkmark	

 Table 11-7 - Results of turning movements calibration - PM peak hour

11.6. Assignment Convergence

The convergence statistics for each modelled time period is summarised below in Table 11-8. Acceptable convergence criteria statistics in line with TAG criteria (see section 5.4) have been achieved are described below:

- Flow Change (%) Percentage of link Flows differing by < 1% between assignmentsimulation loops;
- Delay Change (%) Turn delays differing by < 1% between assignment and simulation;
- Gap (%) Wardrop Equilibrium Gap Function post simulation;
- Assignment Convergence Delta Function (%) / Number of iterations;
- Simulation Convergence Final average absolute change in CFP (PCU/hr) / Number of iterations; and
- VI (%) Variational inequality (Should be > 0)

Time Period	Iteration	Flow Change (%)	Delay Change (%)	% Gap	Assignment Convergence	Simulation Convergence	VI (%)
AM	25	98.7	99.6	0.01	0.0091/10	0.028/3	0.00074
	26	98.8	99.6	0.0086	0.0091/10	0.031/3	0.00067
	27	99.1	99.7	0.01	0.0106/10	0.028/3	0.00049
	28	99.2	99.6	0.0069	0.0071/10	0.026/3	0.00048
IP	14	98.7	99.8	0.0041	0.0035/10	0.017/7	0.00019
	15	98.7	99.8	0.0044	0.0025/10	0.014/7	0.00007
	16	99	99.8	0.0031	0.0023/10	0.015/7	0.0001
	17	99.3	99.9	0.0022	0.0026/10	0.013/7	0.00008
PM	19	98.6	99.5	0.0056	0.0043/10	0.052/4	0.0007
	20	98.8	99.6	0.0099	0.0048/10	0.040/3	- 0.00041
	21	98.7	99.6	0.0055	0.0063/10	0.038/7	0.00043
	22	98.8	99.6	0.0051	0.0036/10	0.044/4	0.00051

Table 11-8 - Model Convergence Summary

12. Public Transport Assignment Model Update

12.1. Network update

The road network used in OSM PTM is identical in scope and network structure to the OSM HAM. Additionally, PTM includes a rail network, which is totally independent of the HAM network.

Bus routes coded in the 2013 OSM remain unchanged in the newly created 2018 base year. The main change to the rail network was the opening of the Oxford Parkway station and the start of the service between Oxford and London Marylebone through Bicester.

12.2. Demand update

An update of the public transport model was also undertaken to bring it to a 2018 base year. As with the network, the starting point was the bus and rail matrices from the 2013 base year. To obtain the 2018 demand matrices, NTEM growth factors were applied. The factors are differentiated by mode, purpose and sector. Table 12-1 shows the comparison of the aggregated demand for each of the two years, separated by mode. The tables in Appendix C show the growth factors used to arrive at the 2018 demand.

		AM peak hour	Inter Peak	PM peak hour
Bus	2013	10,688	7,807	10,306
	2018	9,616	7,052	9,228
	Change	-10%	-10%	-10%
Rail	2013	3,955	1,637	4,477
	2018	4,236	1,914	4,870
	Change	7%	17%	9%

Table 12-1 - Comparison of matrix totals for bus and rail (Passengers)

Comparisons have also been made with 2019 data on bus journeys in Oxford. The conclusions of the comparison were:

- A recent analysis of the P&R demand in 2018 (see Chapter 11) showed that OSM is reasonably close to the observed counts;
- The zones representing John Radcliffe Hospital and Oxford Brookes University show a higher number of trips ending there in OSM compared with the 2019 data;
- In the city centre there are differences in the allocation of trips to particular city centre zones. However, given their proximity and pedestrian connectivity, this is unlikely to have an impact on the assignment results;
- PTAM provides a reasonable representation for 2018 bus travel and does not require any additional adjustments.

12.3. Assignment

All parameters used for assignment (wait time weight, access time weight, etc.) and the type of assignment remained unchanged from the 2013 model. A detailed description can be found in "OSM Public Transport Model Report - Update_Jan2021_v5.3 final", issued in April 2021.

12.4. Fares

The fares for each mode in 2018 have been estimated by applying real term increases to the 2013 fares. These factors have been based on the analysis of the fares undertaken as part of the A40 FBC study. More details can be found in "OSM Forecasting Report - Update_May2021_v1.0.pdf", issued in May 2021.

13. P&R demand update

The Park and Ride data was recalibrated for 2018 to the observed data from P&R sites. OCC provided observed vehicle counts for all the existing P&R sites for 2018. Out of this data, three weeks in March (5th to 23rd of March 2018) were considered as "neutral month" and were used for calibration. For these 3 weeks, the 5-day average was used, given that OSM only models an average weekday.

During the peak hours, and over a 12-hour period, the model provides a good representation of P&R usage.

Table 13-1 to Table 13-4 show a comparison of observed entries and exits at the various sites and compares them with the 2018 modelled data. Greater attention should be given mainly to arrivals in the AM peak and departures in the PM, those being the material flow. At an hourly level, it can be observed that the number of cars using P&R sites compares very well with the counts, both for individual sites and at aggregated level. This implies that the model is producing the correct demand level at each site and thus gives confidence in model predictions.

During the peak hours, and over a 12-hour period, the model provides a good representation of P&R usage.

P&R Site	Vehicles (per hour) (08:00 – 09:00)))	Vehicles (per period) (07:00 – 10:00)								
	OUT			IN			OUT			IN					
	Obs.	Model	Diff.	Obs.	Model	Diff.	Obs.	Model	Diff.	Obs.	Model	Diff.			
Redbridge	15	16	1	213	216	3	45	41	-3	539	551	13			
Seacourt	7	6	-1	280	282	3	17	14	-3	614	722	107			
Peartree	9	10	2	182	179	-3	20	26	6	462	457	-5			
Water Eaton	18	15	-3	232	234	1	57	37	-20	648	597	-51			
Thornhill	33	33	0	164	161	-3	91	85	-6	452	412	-40			
Total	82	80	-2	1,070	1,071	1	231	204	-27	2,715	2,740	24			

Table 13-1 - Comparison of P&R demand - AM Peak (car leg)

|--|

P&R Site	Veh	Vehicles (per hour) Average hour Vehicles (per period) (10:00 –							– 16:00)				
		OUT			IN			OUT			IN		
	Obs.	Model	Diff.	Obs.	Model	Diff.	Obs.	Model	Diff.	Obs.	Model	Diff.	
Redbridge	53	56	3	51	50	-1	318	338	20	303	300	-3	
Seacourt	35	39	4	25	25	-0	212	233	21	149	147	-2	
Peartree	38	40	2	38	40	2	229	242	13	227	240	13	
Water Eaton	58	57	-2	67	61	-6	350	340	-10	402	368	-34	
Thornhill	47	45	-1	49	47	-2	279	271	-9	294	282	-12	
Total	231	237	6	229	223	-7	1,388	1,424	36	1,376	1,337	-39	

Table 13-3 - Comparison of P&R demand - PM Peak (car leg)

P&R Site	Vehicles (per hour) (17:00 – 18:00)					:00)	Vehicles (per period) (16:00 – 19:00)							
	OUT			IN			OUT			IN				
	Obs.	Model	Diff.	Obs.	Model	Diff.	Obs.	Model	Diff.	Obs.	Model	Diff.		
Redbridge	205	211	5	25	22	-3	520	537	17	72	57	-14		
Seacourt	224	221	-3	11	12	1	537	562	26	28	31	2		
Peartree	188	173	-15	11	16	5	440	441	1	34	40	7		
Water Eaton	208	215	7	31	31	0	560	549	-11	85	79	-6		
Thornhill	72	72	-0	27	28	1	204	182	-21	76	71	-5		
Total	897	891	-6	105	109	4	2,260	2,272	12	295	279	-16		

Table 13-4 - Comparison of P&R demand – 12-hour period (car leg)

P&R Site	Vehicles (per period) (07:00 – 19:00)											
		OUT			IN							
	Obs.	Model	Diff.	Obs.	Model	Diff.						
Redbridge	883	916	34	914	909	-5						
Seacourt	766	810	44	792	900	108						
Peartree	689	710	21	722	737	15						
Water Eaton	967	926	-41	1,136	1,044	-91						
Thornhill	574	538	-36	823	765	-58						
Total	3,879	3,900	22	4,386	4,355	-31						

Appendices

Appendix A. Individual Counts Calibration

A.1. Individual Counts Calibration – AM Peak

Location	Direction	Link ID	Obs.	Mod.	Diff	% Diff	GEH	Flow	GEH
OXFORD ST.ALDATES NORTH OF SPEEDWELL STREET	NB	20080-85019	191	174	-17	-9%	1.3	✓	✓
OXFORD ST.ALDATES NORTH OF SPEEDWELL STREET	SB	85019-20080	186	148	-38	-21%	3.0	✓	✓
A420 OXFORD HIGH STREET ALL SOULS	EB	20386-20385	155	160	4	3%	0.3	✓	✓
A420 OXFORD HIGH STREET ALL SOULS	WB	20385-20386	162	231	70	43%	5.0	✓	✓
OXFORD ST.CROSS ROAD	NB	20382-20381	453	545	92	20%	4.1	✓	✓
OXFORD ST.CROSS ROAD	SB	20381-20382	444	371	-73	-16%	3.6	✓	✓
A4144 Beaumont Street	WB	20291-20290	486	562	77	16%	3.3	✓	✓
A4144 Beaumont Street	EB	20290-20291	545	469	-76	-14%	3.4	✓	✓
A420 OXPENS	NB	85194-85198	609	557	-52	-9%	2.2	✓	✓
A420 OXPENS	SB	85198-85194	462	500	39	8%	1.8	✓	✓
A420 OXFORD MAGDALEN BRIDGE	EB	20385-20045	562	531	-31	-6%	1.3	✓	✓
A420 OXFORD MAGDALEN BRIDGE	WB	20045-20385	963	788	-174	-18%	5.9	×	×
A4144 OXFORD FOLLY BRIDGE	NB	20074-20075	629	566	-64	-10%	2.6	✓	✓
A4144 OXFORD FOLLY BRIDGE	SB	20075-20074	369	424	55	15%	2.8	✓	✓
A4144 Oxford Woodstock Rd South of Leckford Rd	NB	20360-85033	458	365	-93	-20%	4.6	✓	✓
A4144 Oxford Woodstock Rd South of Leckford Rd	SB	85033-20360	479	455	-25	-5%	1.1	✓	✓
A4144 Oxford Woodstock Rd S of Blandford Ave	NB	85059-20175	461	510	49	11%	2.2	✓	✓
A4144 Oxford Woodstock Rd S of Blandford Ave	SB	20175-85059	752	800	48	6%	1.7	✓	✓
A4165 Oxford Banbury Rd North of Norham Rd	NB	85037-20350	494	419	-76	-15%	3.5	✓	✓

LMVR | 6.0 | September 2022

Atkins | 5213076_Oxford_Core_Transport_Schemes_LMVR_v7.0 - with accessibility changes - issued.docx

ATKINS

Location	Direction	Link ID	Obs.	Mod.	Diff	% Diff	GEH	Flow	GEH
A4165 Oxford Banbury Rd North of Norham Rd	SB	20350-85037	701	656	-44	-6%	1.7	✓	✓
A4165 Oxford Banbury Rd South of A40	NB	20155-20151	567	530	-37	-6%	1.6	✓	✓
A4165 Oxford Banbury Rd South of A40	SB	20151-20155	771	695	-75	-10%	2.8	✓	✓
Oxford Hythe Bridge Street	EB	20091-20092	435	483	48	11%	2.2	✓	✓
Oxford Hythe Bridge Street	WB	20092-20091	538	635	97	18%	4.0	✓	✓
Oxford Parks Road	NB	20375-20370	430	398	-33	-8%	1.6	✓	✓
Oxford Parks Road	SB	20370-20375	489	555	66	14%	2.9	✓	✓
Site 4, Walton Road, Oxford (Parking Sign) SP 50937 06815	NB	85011-20310	96	80	-16	-17%	1.7	✓	✓
Site 4, Walton Road, Oxford (Parking Sign) SP 50937 06815	SB	20310-85011	173	116	-57	-33%	4.8	✓	✓
B4150 Oxford Marsh Lane North of Horseman Close	NB	20110-16140	463	497	34	7%	1.6	✓	✓
B4150 Oxford Marsh Lane North of Horseman Close	SB	16140-20110	497	569	71	14%	3.1	✓	✓
A4144 Oxford Abingdon Rd South of Weirs Lane	NB	20071-20070	468	562	94	20%	4.1	✓	✓
A4144 Oxford Abingdon Rd South of Weirs Lane	SB	20070-20071	741	817	76	10%	2.7	✓	✓
A420 Oxford Botley Rd W of Seacourt Car Park	EB	20240-20245	1237	1284	48	4%	1.3	✓	✓
A420 Oxford Botley Rd W of Seacourt Car Park	WB	20245-20240	526	581	55	10%	2.3	✓	✓
Oxford Old Road	EB	20430-20435	413	370	-43	-10%	2.2	✓	✓
Oxford Old Road	WB	20435-20430	721	679	-41	-6%	1.6	✓	✓
Old Marston, Oxford Road North of Boults Lane	NB	20520-20515	52	43	-8	-16%	1.2	✓	✓
Old Marston, Oxford Road North of Boults Lane	SB	20515-20520	194	165	-29	-15%	2.2	✓	✓
Site 8, A4158, Oxford (LC 50) SP 52919 10169	NB	20896-85117	476	519	42	9%	1.9	✓	✓
Site 8, A4158, Oxford (LC 50) SP 52919 10169	SB	85117-20896	454	481	27	6%	1.3	✓	✓
B480 Oxford Rd near Temple Rd - ATC	EB	20690-20055	332	377	45	14%	2.4	✓	✓

ATKINS

Location	Direction	Link ID	Obs.	Mod.	Diff	% Diff	GEH	Flow	GEH
B480 Oxford Rd near Temple Rd - ATC	WB	20055-20690	412	436	24	6%	1.2	✓	✓
A420 London Road	WB	85093-20595	479	435	-44	-9%	2.1	✓	✓
A420 London Road	EB	20595-85093	461	480	19	4%	0.9	✓	✓
A44 SOUTH OF PEARTREE ROUNDABOUT	NB	98203-97046	868	774	-95	-11%	3.3	✓	✓
A44 SOUTH OF PEARTREE ROUNDABOUT	SB	97046-98203	1074	884	-190	-18%	6.1	×	×
B4495 MARSTON FERRY ROAD	EB	21175-20520	401	397	-5	-1%	0.2	✓	✓
B4495 MARSTON FERRY ROAD	WB	20520-21175	494	458	-36	-7%	1.7	✓	✓
Oxford, Kingston Rd South of Leckford Rd	NB	20320-85031	102	76	-26	-25%	2.7	✓	✓
Oxford, Kingston Rd South of Leckford Rd	SB	85031-20320	116	72	-44	-38%	4.5	✓	✓
A420 HEADINGTON RD E OF B4150	EB	20040-85075	304	296	-9	-3%	0.5	✓	✓
A420 HEADINGTON RD E OF B4150	WB	85075-20040	309	242	-67	-22%	4.0	✓	✓
Oxford Cowley Rd East of Dawson Street	EB	20045-50007	215	168	-47	-22%	3.4	✓	✓
Oxford Cowley Rd East of Dawson Street	WB	50007-20045	392	328	-63	-16%	3.3	✓	✓
Hollow Way	NB	20050-20675	329	300	-28	-9%	1.6	✓	✓
Hollow Way	SB	20675-20050	459	380	-79	-17%	3.9	✓	✓

A.2. Individual Counts Calibration – Inter Peak

Location	Direction	Link ID	Obs.	Mod.	Diff	% Diff	GEH	Flow	GEH
OXFORD ST.ALDATES NORTH OF SPEEDWELL STREET	NB	20080-85019	145	186	41	22%	3.2	✓	✓
OXFORD ST.ALDATES NORTH OF SPEEDWELL STREET	SB	85019-20080	237	176	-61	-35%	4.3	✓	✓
A420 OXFORD HIGH STREET ALL SOULS	EB	20386-20385	189	245	55	23%	3.8	✓	✓
A420 OXFORD HIGH STREET ALL SOULS	WB	20385-20386	186	245	59	24%	4.0	✓	✓
OXFORD ST.CROSS ROAD	NB	20382-20381	315	333	18	6%	1.0	✓	✓
OXFORD ST.CROSS ROAD	SB	20381-20382	320	374	54	14%	2.9	✓	✓
A4144 Beaumont Street	WB	20291-20290	431	411	-20	-5%	1.0	✓	✓
A4144 Beaumont Street	EB	20290-20291	445	413	-32	-8%	1.6	✓	✓
A420 OXPENS	NB	85194-85198	554	464	-90	-19%	4.0	✓	✓
A420 OXPENS	SB	85198-85194	507	451	-56	-12%	2.6	✓	✓
A420 OXFORD MAGDALEN BRIDGE	EB	20385-20045	577	618	41	7%	1.7	✓	✓
A420 OXFORD MAGDALEN BRIDGE	WB	20045-20385	671	580	-92	-16%	3.7	✓	✓
A4144 OXFORD FOLLY BRIDGE	NB	20074-20075	528	513	-15	-3%	0.7	✓	✓
A4144 OXFORD FOLLY BRIDGE	SB	20075-20074	514	558	43	8%	1.9	✓	✓
A4144 Oxford Woodstock Rd South of Leckford Rd	NB	20360-85033	431	342	-89	-26%	4.5	✓	✓
A4144 Oxford Woodstock Rd South of Leckford Rd	SB	85033-20360	302	264	-38	-14%	2.3	✓	✓
A4144 Oxford Woodstock Rd S of Blandford Ave	NB	85059-20175	466	526	60	11%	2.7	✓	✓
A4144 Oxford Woodstock Rd S of Blandford Ave	SB	20175-85059	475	538	63	12%	2.8	✓	✓
A4165 Oxford Banbury Rd North of Norham Rd	NB	85037-20350	478	510	32	6%	1.4	✓	✓
A4165 Oxford Banbury Rd North of Norham Rd	SB	20350-85037	490	519	29	5%	1.3	✓	✓
A4165 Oxford Banbury Rd South of A40	NB	20155-20151	536	525	-11	-2%	0.5	✓	\checkmark

ATKINS

Location	Direction	Link ID	Obs.	Mod.	Diff	% Diff	GEH	Flow	GEH
A4165 Oxford Banbury Rd South of A40	SB	20151-20155	466	432	-34	-8%	1.6	✓	✓
Oxford Hythe Bridge Street	EB	20091-20092	427	484	57	12%	2.7	✓	✓
Oxford Hythe Bridge Street	WB	20092-20091	454	534	80	15%	3.6	✓	✓
Oxford Parks Road	NB	20375-20370	398	483	85	18%	4.0	✓	✓
Oxford Parks Road	SB	20370-20375	390	410	20	5%	1.0	✓	✓
Site 4, Walton Road, Oxford (Parking Sign) SP 50937 06815	NB	85011-20310	83	81	-2	-2%	0.2	✓	✓
Site 4, Walton Road, Oxford (Parking Sign) SP 50937 06815	SB	20310-85011	136	121	-15	-13%	1.4	✓	✓
B4150 Oxford Marsh Lane North of Horseman Close	NB	20110-16140	548	569	21	4%	0.9	✓	✓
B4150 Oxford Marsh Lane North of Horseman Close	SB	16140-20110	498	517	19	4%	0.9	✓	✓
A4144 Oxford Abingdon Rd South of Weirs Lane	NB	20071-20070	482	509	27	5%	1.2	✓	✓
A4144 Oxford Abingdon Rd South of Weirs Lane	SB	20070-20071	734	770	36	5%	1.3	✓	✓
A420 Oxford Botley Rd W of Seacourt Car Park	EB	20240-20245	842	770	-72	-9%	2.5	✓	✓
A420 Oxford Botley Rd W of Seacourt Car Park	WB	20245-20240	938	962	24	2%	0.8	✓	✓
Oxford Old Road	EB	20430-20435	487	478	-9	-2%	0.4	✓	✓
Oxford Old Road	WB	20435-20430	476	444	-32	-7%	1.5	✓	✓
Old Marston, Oxford Road North of Boults Lane	NB	20520-20515	95	83	-12	-14%	1.3	✓	✓
Old Marston, Oxford Road North of Boults Lane	SB	20515-20520	120	89	-31	-35%	3.0	✓	✓
Site 8, A4158, Oxford (LC 50) SP 52919 10169	NB	20896-85117	442	494	52	11%	2.4	✓	✓
Site 8, A4158, Oxford (LC 50) SP 52919 10169	SB	85117-20896	499	495	-4	-1%	0.2	✓	✓
B480 Oxford Rd near Temple Rd - ATC	EB	20690-20055	363	318	-44	-14%	2.4	✓	✓
B480 Oxford Rd near Temple Rd - ATC	WB	20055-20690	387	377	-10	-3%	0.5	✓	✓
A420 London Road	WB	85093-20595	485	463	-21	-5%	1.0	✓	✓

ATKINS

Location	Direction	Link ID	Obs.	Mod.	Diff	% Diff	GEH	Flow	GEH
A420 London Road	EB	20595-85093	541	527	-14	-3%	0.6	✓	✓
A44 SOUTH OF PEARTREE ROUNDABOUT	NB	98203-97046	1062	915	-147	-16%	4.7	✓	✓
A44 SOUTH OF PEARTREE ROUNDABOUT	SB	97046-98203	1089	784	-305	-39%	10.0	×	×
B4495 MARSTON FERRY ROAD	EB	21175-20520	445	424	-22	-5%	1.0	✓	✓
B4495 MARSTON FERRY ROAD	WB	20520-21175	430	450	20	4%	1.0	✓	✓
Oxford, Kingston Rd South of Leckford Rd	NB	20320-85031	116	125	9	7%	0.8	✓	✓
Oxford, Kingston Rd South of Leckford Rd	SB	85031-20320	69	46	-23	-49%	3.0	✓	✓
A420 HEADINGTON RD E OF B4150	EB	20040-85075	227	250	22	9%	1.4	✓	✓
A420 HEADINGTON RD E OF B4150	WB	85075-20040	291	266	-25	-10%	1.5	✓	✓
Oxford Cowley Rd East of Dawson Street	EB	20045-50007	259	221	-38	-17%	2.5	✓	✓
Oxford Cowley Rd East of Dawson Street	WB	50007-20045	318	246	-71	-29%	4.3	✓	✓
Hollow Way	NB	20050-20675	329	271	-57	-21%	3.3	✓	✓
Hollow Way	SB	20675-20050	351	358	7	2%	0.4	✓	✓

A.3. Individual Counts Calibration – PM Peak

Location	Direction	Link ID	Obs.	Mod.	Diff	% Diff	GEH	Flow	GEH
OXFORD ST.ALDATES NORTH OF SPEEDWELL STREET	NB	20080-85019	149	180	30	17%	2.4	✓	✓
OXFORD ST.ALDATES NORTH OF SPEEDWELL STREET	SB	85019-20080	229	239	10	4%	0.6	✓	✓
A420 OXFORD HIGH STREET ALL SOULS	EB	20386-20385	206	212	7	3%	0.5	✓	✓
A420 OXFORD HIGH STREET ALL SOULS	WB	20385-20386	186	221	35	16%	2.5	✓	✓
OXFORD ST.CROSS ROAD	NB	20382-20381	384	441	57	13%	2.8	✓	✓
OXFORD ST.CROSS ROAD	SB	20381-20382	397	427	30	7%	1.5	✓	✓
A4144 Beaumont Street	WB	20291-20290	467	408	-58	-14%	2.8	✓	✓
A4144 Beaumont Street	EB	20290-20291	459	434	-25	-6%	1.2	✓	✓
A420 OXPENS	NB	85194-85198	477	458	-19	-4%	0.9	✓	✓
A420 OXPENS	SB	85198-85194	520	489	-31	-6%	1.4	✓	✓
A420 OXFORD MAGDALEN BRIDGE	EB	20385-20045	712	639	-72	-11%	2.8	✓	✓
A420 OXFORD MAGDALEN BRIDGE	WB	20045-20385	736	641	-95	-15%	3.6	✓	✓
A4144 OXFORD FOLLY BRIDGE	NB	20074-20075	420	390	-29	-8%	1.5	✓	✓
A4144 OXFORD FOLLY BRIDGE	SB	20075-20074	550	517	-33	-6%	1.4	✓	✓
A4144 Oxford Woodstock Rd South of Leckford Rd	NB	20360-85033	506	443	-63	-14%	2.9	✓	✓
A4144 Oxford Woodstock Rd South of Leckford Rd	SB	85033-20360	300	230	-70	-30%	4.3	✓	✓
A4144 Oxford Woodstock Rd S of Blandford Ave	NB	85059-20175	621	624	3	1%	0.1	✓	✓
A4144 Oxford Woodstock Rd S of Blandford Ave	SB	20175-85059	550	622	72	12%	3.0	✓	✓
A4165 Oxford Banbury Rd North of Norham Rd	NB	85037-20350	549	549	-1	0%	0.0	✓	✓
A4165 Oxford Banbury Rd North of Norham Rd	SB	20350-85037	491	507	16	3%	0.7	✓	✓
A4165 Oxford Banbury Rd South of A40	NB	20155-20151	749	676	-74	-11%	2.8	✓	✓

ATKINS

Location	Direction	Link ID	Obs.	Mod.	Diff	% Diff	GEH	Flow	GEH
A4165 Oxford Banbury Rd South of A40	SB	20151-20155	503	593	91	15%	3.9	✓	✓
Oxford Hythe Bridge Street	EB	20091-20092	392	482	89	19%	4.3	✓	✓
Oxford Hythe Bridge Street	WB	20092-20091	449	520	71	14%	3.2	✓	✓
Oxford Parks Road	NB	20375-20370	454	529	75	14%	3.4	✓	✓
Oxford Parks Road	SB	20370-20375	405	504	100	20%	4.7	✓	✓
Site 4, Walton Road, Oxford (Parking Sign) SP 50937 06815	NB	85011-20310	113	89	-24	-27%	2.4	✓	✓
Site 4, Walton Road, Oxford (Parking Sign) SP 50937 06815	SB	20310-85011	144	44 153 49 1028		6%	0.7	✓	✓
B4150 Oxford Marsh Lane North of Horseman Close	NB	20110-16140	949	49 1028 80 12 475 -38		8%	2.5	✓	✓
B4150 Oxford Marsh Lane North of Horseman Close	SB	16140-20110	512	475	-38	-8%	1.7	✓	✓
A4144 Oxford Abingdon Rd South of Weirs Lane	NB	20071-20070	480	572	92	16%	4.0	✓	✓
A4144 Oxford Abingdon Rd South of Weirs Lane	SB	20070-20071	926	990	64	6%	2.1	✓	✓
A420 Oxford Botley Rd W of Seacourt Car Park	EB	20240-20245	683	598	-85	-14%	3.4	✓	✓
A420 Oxford Botley Rd W of Seacourt Car Park	WB	20245-20240	1250	1250 1148 -1		-9%	3.0	✓	✓
Oxford Old Road	EB	20430-20435	672 671 -1		-1	0%	0.0	✓	✓
Oxford Old Road	WB	20435-20430	444	352	-92	-26%	4.6	✓	✓
Old Marston, Oxford Road North of Boults Lane	NB	20520-20515	87	65	-22	-34%	2.5	✓	✓
Old Marston, Oxford Road North of Boults Lane	SB	20515-20520	120	110	-9	-8%	0.9	✓	✓
Site 8, A4158, Oxford (LC 50) SP 52919 10169	NB	20896-85117	532	604	72	12%	3.0	✓	✓
Site 8, A4158, Oxford (LC 50) SP 52919 10169	SB	85117-20896	588	548	-41	-7%	1.7	✓	✓
B480 Oxford Rd near Temple Rd - ATC	EB	20690-20055	368	375	7	2%	0.4	✓	✓
B480 Oxford Rd near Temple Rd - ATC	WB	20055-20690	451	367	-85	-23%	4.2	✓	✓
A420 London Road	WB	85093-20595	342	374	32	9%	1.7	✓	✓

ATKINS

Location	Direction	Link ID	Obs.	Mod.	Diff	% Diff	GEH	Flow	GEH
A420 London Road	EB	20595-85093	358	324	-34	-11%	1.8	✓	✓
A44 SOUTH OF PEARTREE ROUNDABOUT	NB	98203-97046	1239	980	-259	-26%	7.8	×	×
A44 SOUTH OF PEARTREE ROUNDABOUT	SB	97046-98203	1118	964	-154	-16%	4.8	✓	✓
B4495 MARSTON FERRY ROAD		21175-20520	20520 446 21175 498		14	3%	0.7	✓	✓
B4495 MARSTON FERRY ROAD	WB	20520-21175	498	522	24	5%	1.1	✓	✓
Oxford, Kingston Rd South of Leckford Rd	NB	20320-85031	156	105	-51	-49%	4.5	✓	✓
Oxford, Kingston Rd South of Leckford Rd	SB	85031-20320	70	40	-30	-76%	4.1	✓	✓
A420 HEADINGTON RD E OF B4150	EB	20040-85075	222	198	-24	-12%	1.6	✓	✓
A420 HEADINGTON RD E OF B4150	WB	85075-20040	384	297	-87	-29%	4.7	✓	✓
Oxford Cowley Rd East of Dawson Street	EB	20045-50007	306	250	-55	-22%	3.3	✓	✓
Oxford Cowley Rd East of Dawson Street	WB	50007-20045	344	271	-72	-27%	4.1	✓	✓
Hollow Way	NB	20050-20675	402	346	-56	-16%	2.9	✓	✓
Hollow Way	SB	20675-20050	336	323	-12	-4%	0.7	✓	✓

Appendix B. Journey Time Route Graphs

B.2. Route 1 SB: A423/A4144 Kennington Rbt to A40/Banbury Rd Rbt – AM Peak

B.3. Route 2 EB: A420/A34 Botley Interchange to A420/Brewer Street Jct – AM Peak

B.4. Route 2 WB: A420/A34 Botley Interchange to A420/Brewer Street Jct – AM Peak

B.5. Route 3 EB: High Street/Longwall St Jct to A40/A4142/A420 Headington Rbt – AM Peak

B.6. Route 3 WB: High Street/Longwall St Jct to A40/A4142/A420 Headington Rbt – AM Peak

B.8. Route 4 WB: A40 – AM Peak

Page 63 of 74

KINS

Member of the SNC-Lava

B.9. Route 1 NB: A423/A4144 Kennington Rbt to A40/Banbury Rd Rbt – Inter Peak

B.10. Route 1 SB: A423/A4144 Kennington Rbt to A40/Banbury Rd Rbt – Inter Peak

B.11. Route 2 EB: A420/A34 Botley Interchange to A420/Brewer Street Jct – Inter Peak

B.12. Route 2 WB: A420/A34 Botley Interchange to A420/Brewer Street Jct – Inter Peak

B.14. Route 3 WB: High Street/Longwall St Jct to A40/A4142/A420 Headington Rbt – Inter Peak

B.15. Route 4 EB: A40 – Inter Peak

B.16. Route 4 WB: A40 – Inter Peak

B.17. Route 1 NB: A423/A4144 Kennington Rbt to A40/Banbury Rd Rbt – PM Peak

B.18. Route 1 SB: A423/A4144 Kennington Rbt to A40/Banbury Rd Rbt – PM Peak

B.19. Route 2 EB: A420/A34 Botley Interchange to A420/Brewer Street Jct – PM Peak

B.20. Route 2 WB: A420/A34 Botley Interchange to A420/Brewer Street Jct – PM Peak

B.21. Route 3 EB: High Street/Longwall St Jct to A40/A4142/A420 Headington Rbt – PM Peak

B.22. Route 3 WB: High Street/Longwall St Jct to A40/A4142/A420 Headington Rbt – PM Peak

B.23. Route 4 EB: A40 – PM Peak

B.24. Route 4 WB: A40- PM Peak

INS

Member of the SNC-Lava

Appendix C. NTEM growth factors for bus and rail

Table C-1 - Bus - NTEM growth factors between 2013 and 2018

		HBEB		HBW		НВО		NHBEB		NHBO	
Sector	Description	Production	Attraction								
1	Oxford	0.957	0.979	0.955	0.934	0.937	0.953	0.964	0.968	0.962	0.976
2	Bicester	1.000	1.000	0.996	0.958	1.043	0.968	1.000	1.000	0.981	0.973
3	Abingdon	1.040	1.000	0.965	0.939	1.011	0.968	0.923	1.000	0.983	0.991
4	Most of Vale of White Horse	1.000	0.984	0.974	0.937	1.015	0.961	1.000	0.909	0.975	0.973
5	Wantage/Grove	1.000	1.000	0.967	0.953	1.020	0.975	1.000	1.000	1.000	1.000
6	Didcot	1.000	0.833	0.942	0.938	0.991	0.966	0.900	1.000	0.994	1.000
7	Most of South Oxfordshire	1.000	0.984	0.961	0.943	0.999	0.969	0.984	0.955	1.003	0.996
8	Witney	1.000	1.000	0.940	0.949	0.989	0.972	1.000	0.909	0.981	0.990
9	West Oxfordshire	0.973	1.000	0.935	0.945	1.000	0.967	1.000	1.000	0.998	0.987
10	North Oxford - Kidlington	1.100	1.000	1.023	0.938	1.041	0.979	1.000	1.000	0.982	1.000
11	Most of Cherwell	1.056	1.000	1.018	0.953	1.044	0.982	0.929	1.000	1.007	1.010
12	Banbury	1.048	1.000	1.001	0.947	1.024	0.973	1.000	1.000	0.988	1.000
13	Swindon	0.983	0.964	0.945	0.929	0.986	0.978	0.959	0.952	0.980	0.993
14	Rest of Wiltshire	0.966	0.959	0.934	0.938	0.976	0.977	0.975	0.977	1.002	1.000
15	Gloucestershire	0.976	0.971	0.946	0.943	0.957	0.954	0.973	0.978	0.980	0.979
16	Hereford & Worcester	0.965	0.964	0.921	0.927	0.988	0.982	0.961	0.958	0.994	0.995
17	Warwickshire	0.964	0.992	0.929	0.955	0.983	0.987	0.984	0.994	1.009	1.009
18	West Midlands county	0.982	0.978	0.949	0.946	0.956	0.956	0.967	0.969	0.970	0.972
19	Northamptonshire	0.986	0.973	0.944	0.937	0.993	0.979	0.970	0.974	0.998	1.006
20	Milton Keynes	1.016	1.054	0.991	1.011	1.005	0.983	1.034	1.033	1.012	1.026
21	Buckinghamshire	0.989	0.997	0.945	0.951	0.982	0.975	0.993	0.992	1.002	1.011
22	Rest of Berkshire	0.987	1.005	0.950	0.961	0.971	0.974	1.005	1.000	1.005	0.996
23	Reading	0.987	1.010	0.959	0.963	0.956	0.975	1.008	1.000	0.993	0.990
24	West Berkshire	0.988	1.010	0.932	0.964	0.981	0.977	1.000	1.000	1.015	0.998
25	Greater London	1.051	1.044	1.009	1.000	0.982	0.981	1.025	1.025	1.002	1.002
26	Rest of SE	0.986	0.999	0.952	0.961	0.978	0.980	0.991	0.992	1.001	0.999
27	East of England	0.986	1.011	0.948	0.966	0.995	0.999	0.994	0.997	1.014	1.017
28	Rest of SW	0.963	0.965	0.934	0.936	0.968	0.970	0.966	0.968	0.986	0.986
29	Rest of WM	0.963	0.966	0.932	0.936	0.967	0.965	0.964	0.965	0.983	0.983
30	EM, Northern Regions and Scotland	0.964	0.964	0.933	0.933	0.954	0.954	0.958	0.959	0.970	0.970
31	Wales	0.959	0.959	0.927	0.927	0.966	0.966	0.957	0.957	0.978	0.978

Table C-2 - Rail - NTEM growth factors between 2013 and 2018

		HBEB		HBW		НВО		NHBEB		NHBO	
Sector	Description	Production	Attraction								
1	Oxford	1.033	1.019	1.002	0.963	0.962	0.956	0.991	0.995	0.975	0.986
2	Bicester	1.043	1.044	1.023	0.985	1.062	0.977	1.026	1.000	0.977	1.000
3	Abingdon	1.079	1.091	0.998	0.961	1.016	0.993	0.980	1.000	1.000	1.000
4	Most of Vale of White Horse	1.067	1.034	0.998	0.966	1.029	0.975	1.000	1.000	0.990	0.967
5	Wantage/Grove	1.030	1.000	0.983	1.000	1.013	0.981	1.000	1.000	1.000	1.000
6	Didcot	1.019	1.053	0.975	0.982	1.022	0.986	1.000	1.000	0.985	0.968
7	Most of South Oxfordshire	1.048	1.041	0.988	0.972	1.020	0.994	1.000	1.000	1.019	0.997
8	Witney	1.000	1.000	0.960	1.000	0.976	1.027	1.000	1.000	1.000	1.077
9	West Oxfordshire	1.036	1.000	0.968	0.971	1.016	0.996	1.000	1.000	1.022	0.981
10	North Oxford - Kidlington	1.083	1.000	1.022	0.750	1.047	0.950	1.000	1.000	1.000	1.000
11	Most of Cherwell	1.091	1.074	1.046	0.972	1.060	1.016	1.019	1.000	1.043	1.048
12	Banbury	1.099	1.051	1.032	0.979	1.080	0.986	1.014	1.000	1.011	1.031
13	Swindon	1.024	0.998	0.973	0.956	1.009	1.003	0.980	0.979	0.994	1.010
14	Rest of Wiltshire	1.003	1.001	0.955	0.959	0.994	1.002	0.989	0.977	1.017	1.015
15	Gloucestershire	1.024	1.024	0.977	0.976	0.982	0.976	1.001	1.003	1.001	1.000
16	Hereford & Worcester	0.993	0.988	0.943	0.939	0.998	0.995	0.974	0.968	1.004	1.003
17	Warwickshire	1.007	1.027	0.952	0.976	0.997	1.012	1.001	1.008	1.022	1.022
18	West Midlands county	1.016	1.011	0.977	0.972	0.973	0.970	0.992	0.993	0.989	0.991
19	Northamptonshire	1.030	1.020	0.986	0.984	1.006	1.003	0.999	1.000	1.018	1.022
20	Milton Keynes	1.068	1.068	1.022	1.038	1.031	1.028	1.043	1.048	1.043	1.046
21	Buckinghamshire	1.031	1.038	0.974	0.979	0.992	0.995	1.012	1.000	1.017	1.018
22	Rest of Berkshire	1.035	1.051	0.977	0.991	0.991	0.982	1.022	1.008	1.016	1.002
23	Reading	1.045	1.057	1.007	0.995	0.977	0.983	1.032	1.020	1.012	1.001
24	West Berkshire	1.018	1.056	0.960	0.993	0.996	0.997	1.023	1.015	1.030	1.008
25	Greater London	1.084	1.077	1.028	1.023	0.992	0.991	1.040	1.039	1.020	1.023
26	Rest of SE	1.029	1.027	0.978	0.982	0.993	0.998	1.007	1.008	1.019	1.011
27	East of England	1.024	1.016	0.975	0.982	1.003	1.010	1.004	1.008	1.025	1.021
28	Rest of SW	1.007	1.009	0.965	0.965	0.987	0.987	0.990	0.991	1.001	1.001
29	Rest of WM	1.002	1.000	0.958	0.957	0.984	0.983	0.986	0.982	0.998	0.998
30	EM, Northern Regions and Scotland	1.001	1.002	0.967	0.967	0.967	0.967	0.984	0.984	0.988	0.988
31	Wales	0.993	0.993	0.951	0.951	0.980	0.980	0.978	0.978	0.991	0.991

Oana Santos Atkins Limited Woodcote Grove Ashley Road Epsom KT18 5BW

Fax: +44 (0)1372 740055 Direct: +44 (0)1372 756110 oana.santos@atkinsglobal.com

© Atkins Limited except where stated otherwise